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ESTIMATION OF PLANETARY WAVE PARAMETERS

FROM THE DATA OF THE 1981 OCEAN ACOUSTIC TOMOGRAPHY EXPERIMENT

by

Ching-Sang Chiu

Submitted to the Massachusetts Institute of Technol ogy/Woods Hole

Oceanographic Institution Joint Program in Oceanographic Engineering

in August 1985 in partial fulfillment of the requirements for the

Degree of Doctor of Science

ABSTRACT

'Using the maximum-likelihood estimation method and minimization

tecnniques, quasi-geostrophic wave solutions were fitted to the

-" observations of the 1981 Ocean Acoustic Tomography Experiment. The

experiment occupied a 300 km square area centered at 26N, 70W, and

.  had a duration of -80 days. The data set consisted of acoustic

travel-time records, temperature records and CTD profiles, obtained

from the acoustic tomographic array, moored temperature sensors and

recorders, and ship surveys, respectively. While the latter two

were conventional spot measurements, the former corresponds to

integral measurements of the temperature (or sound-speed) field.

--- i-i.
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The optimal fit to the data corresponded to 3 waves in the first

baroclinic mode, evolving under the presence of a westward mean flow

with vertical shear. The flow was estimated to be weak (-2 cnis),

but it changed the wave periods significantly by producing large

Doppler shifts. The waves were dynamically stable to the mean flow,

V had weak nonlinear interactions with each other and did not form a

resonant traid; thus they constituted a fully linear solution.

Evidence for the existence of the waves was strongly supported

by the high correlation (-0.9) between the data and the -it, the

large amount of signal energy resolved (-80 percent), the excellent

quality of the wave-parameter estimate (only about 10 percent in

error), and the general agreement between the observations and

quasi-geostrophi c linear dynamics.

Thesis Supervisor: Dr. Yves J.F. Desaubies

Associate Scientist, Woods Hole Oceanographic

Institution, Woods Hole, MA.
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CHAPTER I

INTRODU CT ION

over the last two decades, several vigorous research programs

S"have been conducted by scientists to study oceanic mesoscale

variability. As a consequence, a more detailed and realistic

description of the ocean circulation has been obtained. Much of the

knowledge of the variability has been obtained from extensive

experiments such as POLYGON, 1970 (Brekhovskikh et al., 1971),

MOUE-O, 1971-1972, MODE-1, 1973 (MODE Group, 1978) and the recent

POLYMODE, 1974-1978 (U.S. POLYMODE Organizing Committee, 1976) in

whicn multi-moorings and a variety of instruments were deployed to

observe the four-dimensional fields of current and density at

mid-latitudes in the North Atlantic. Today, it is well-known that

mesocale fluctuations that are often called 'eddies' are

energetically dominant and exist everywhere in open oceans. Even

close to land, numerous observations of trapped mesoscale motions

have also been reported (Longuet-Higgins, 1968, Wunsch, 1972, and

Hogg, 1980).

Besides being the most dominant feature in the ocean, eddies

interact with the mean circulation through the processes of energy

cascades to larger-scale flows (Rhines, 1975) and barotropic and

barocl inic instabilities (Pedlosky, 1979), and they transport heat

uana sdlt effectively by their intense flow field. Therefore, the

knowledge of eddy dynamics is of fundamental interest to physical
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oceanographers in understanding the general circulation.

Furthermore, the research is also of great significance to

meteorologists and marine scientists in other disciplines, since

ocean eddies can influence the long-term climate on earth through

air-sea interaction, transport chemicals, and relocate biological

matter.

Mesoscale eddies are characterized by periods of 50 to 100 days,

horizontal scales of order 100 km and vertical scales comparable to

the depth of the ocean (Richman et al., 1977, and McWilliams,

1979). In places where the flow field is strong, for example in

regions close to the major currents, the fluctuations are nonlinear

turbulent motions. However, it is conceivable that the fluctuations

can be wave-like and dispersive in places that are relative calm,

because the l inearized equation of mesoscale motion, that is the

linearized quasi-geostrophic potential vorticity equation, does

admit planetary wave solutions (LeBlond and Mysak, 1978, and

Pedlosky, 1979). Furthermore, the wave solution does exhibit

behavior that is consistent with some observations, for example,

westward phase propagation.

Literature on the theory of planetary waves is abundant, but

only slight observational evidence for their existence in open

oceans exists. Perhaps, the most striking evidence to date was

found by McWilliams and Robinson (1974), and McWilliams a,,P . ier1

(1976), by fitting waves to the POLYGON observations and t"P

MODE-array data, respectively. POLYGON was conducted by the USSR in



the tropical North Atlantic during the spring and summer of 1970.

The array, which centered at 16030'N, 33"30'W, measured the eddy

-. currents for several months from moored current meters and

hydrography. The data was analyzed and presented by Koshlyakov and

Grachev (1973). They inferred that a single, anti -cyclonic eddy, a

few hundred kilometers in diameter, traversed the array during the

experiment, and synthesized their observations in terms of a moving

. elliptical cylinder representing the locus of maximum horizontal

* current at each depth. McWilliams and Robinson (1974) fitted

pl anetary waves in a two-layer model to the descriptive synthesis,

in wi ch the free parameters, that is the wave amplitudes and

wavenumbers were determined from the major and minor axes, the

orientation angle and the maximum orbital speed of the ellipse. It

was found that the synoptic structure and propagation of the ellipse

were well matched by a pair of baroclinic waves with equal pressure

amplitudes. However, the POLYGON wave fit was highly subjective and

might not be optimal due to the fact that the number of waves was

arbitrarily chosen and the observations used were not the actual

-: data themselves. The lack of actual data has prevented McWilliams

-. L and Robinson from making a quantitative assessment of the wave model.

The Mid-Ocean Dynamics Experiments MODE-O and MODE-i were

conducted jointly by the USA and UK in an approximately 400 km

square region centered at 28 N, 690 40'W, again in the tropical North

Atlantic. MUUE-O was a collection of several pilot studies that

1 were carried out between 1971 and 1972 to identify the energy level,

• o-

.................................................................

....................................................................... " """" "+ " "...i
,,+ +. .-++., + ,-. +, + ° '+ t•. . . .. +.... .. .. " + '" + .. . + ' +' " + + - " " . . . .. . . .. . .. . . ... * *.. .
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and space and time scale- of the mesoscale motion. It was then

followed by MODE-i, which was a more comprehensive experiment

*designed to provide an accurate four-dimensional mapping of a

mid-ocean eddy during the spring of 1973. Several combinations of

barotropic and baroclinic waves in a continuous ocean model were

fitted to the MODE-O and MODE-i data sets by McWilliams and Flierl

(1976). While the MODE-0 data set contained only current-meter

records having durations of from 1 to 3 months, the MODE-i data set

was much larger and more uniform in space and time, having a

duration of 4 months. It also contained different types of

observations, i.e. from current meters, moored temperature sensors,

hydrographic stations and float tracks. In the fitting process, the

free wave parameters were chosen optimally to minimize a quadratic

error norm for the differences between the data and fit. While the

best MODE-i fit consisted of a pair of waves in the barotropic mode

and a pair of waves in the first barocl inic mode, the best MODE-O

fit consisted of a pair of barotropic waves only. Both MODE wave

fits were fairly successful, having correlations of -0.7 with the

data and accounting for -1/2 of the observed signal energies, i .e.

-70 percent of the signals (rms). However, the MODE-1 fit

corresponded to an inconsistent linear solution: nonlinear wave-wave

interactions within the fit were predicted by the weakly nonlinear

theory to be strong but were not found in the data. Thus, there

remains some doubt as to whether planetary waves truely existed

during MODE-i, and more fundamentally perhaps, whether planetary
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* wave propagation is a typical dynamical phenomenon in that part of

-; the ocean.

The purpose of this dissertation is threefold. First, it

reinvestigates the existence of planetary waves in the tropical

North Atlantic. This time, the investigation is done by trying to

detect the wave signals from the acoustic and spot observations made

in the 1981 Ocean Acoustic Tomography Experiment (The Ocean

Tomography Group, 1982), and in doing so, the wave dynamics in the

region which is centered at 260N, 70OW (which will be referred to as

the tomographic region) is also investigated. Second, it examines

the performance of the acoustic-tomographic observational system,

the spot -observational system and the comb~ination of the two

* systems, as deployed in the experiment, in observing the waves and

also in mapping the ocean. Third, it explores the possibility of

using acoustic tomography to provide adequate large-scale monitoring

in the absence of the tracking of the motion of the acoustic

moorings.

The investigation of the existence and dynamics of planetary

waves involves analyzing the fits of different but plausible

wave-propagation models to different types of observations of

sound-speed or temperature perturbations, made by the CTD casts,

temperature sensors, temperature -pressure recorders and the acoustic

toinographic array deployed in the experiment. The hope is to be

able to detect the waves and, at the same time, determine the

correct wave dynamics in the fitting process by comparing the
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quality of the different wave-model fits. Due to the insufficiency

of explicit current measurements which came from only two horizontal

'9,. locations, some deficiences will persist in our investigation. For

*example, we cannot observe the barotropic waves and explore the

thermal wind relation between the wave-induced current and density

per turbati on s.

The technique of fitting used here is procedurally similar to

that used by McWilliams and Flierl (1976), corresponding to the

minimization of a quadratic error norm between the data and the wave

.7: fit, that is a weighted sum of products of residuals. However, a

fundamental difference is that, while they have defined their error

norm by choosing the weighting factors in a subjective manner as to

give equal weighting to each subset of data of the same type, we

have constructed our norm by adopting the idea of maximum likelihood

from the stochastic framework, i .e. the weighting factors are the

reciprocals of the noise variances. The appeal of using statistical

approaches is that the meaning of a wave fit being the 'optimal ' or

'best' can be explicitly defined in terms of statistical

conditions. Another difference is that our fitting involves

acoustic observations that correspond to integral measurements of

the field in addition to spot observations.

We must give credit to The Ocean Tomography Group who provided

tne data. The experiment was conducted by them primarily for the

testing of 'Ocean Acoustik Tomography' which is a pure acoustic

inverse scheme for monitoring large-scale fluctuations in ocean

.-.49

.. . . . . . . . . . . . -
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basins. The innovative idea of ocean tomography was first

introduced by Munk and Wunsch (1979) and the scheme is analogous to

the medical tomographic procedure CAT scan. A typical mid-ocean

tomoyraphic system, as described by Munk and Wunsch and deployed in

the experiment, consists of a sparse horizontal array of moored

mid-water acoustic sources and receivers that surrounds a large area

of the ocean under study, so that by exploiting the properties of

sound propagation in the SOFAR channel , such as low attenuation and

multipath arrivals, the entire volume can be remotely sensed,

horizontally, vertically, and temporally with large-scale resolution

by using repeated acoustic transmissions. Thus, through

mathematical modeling of the relation between oceanic and acoustical

fluctuations, the four-dimensional sound-speed perturbation field

should be reconstructaule based on the observed perturbations of the

multipath arrival times using inverse techniques. Superior to

traditional spot-neasurement techniques, acoustic tomography can

monitor a larger region and provide a larger database with fewer

moorings, and its averaging (integrating) process can filter out

undesirable small-scale oceanic features automatically.

Furthermore, unlike shipboard surveys, it can map the ocean

instantly and the mapping can be done frequently. These advantages

of cost effectiveness and high temporal resolution are some of the

appeal of acoustic tomography. However, the acoustical scheme

depends critically on the stability, identification and resolution

of multipaths over long distances. These have been verified hv

-°.°°-.. . ,"-...q~x~ f A .~.>i* Kf
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Spiesberger et al. (1980) and Spindel and Spiesberger (1981) in

preliminary experiments.

The 1981 experiment was the first field test of a full

tomographic system for mapping the ocean at mesoscale resolution.

In order to evaluate the performance of the system, the experimental

region was also measured with traditional techniques by The Ocean

Tomography Group during the same time. The idea was to provide a

basis for comparison. The tomographic system in a linear form was

later 'inverted' for the three-dimensional sound-speed perturbation

fields, independently of time and only with acoustic data, by

Cornuelle (1983) and Cornuelle et al. (1985). Because the daily

tomographic maps do compare favorably with the ship-based objective

maps, they have demonstrated the practicality of acoustic tomography

for mesoscale monitoring. Here, our principal objective is to

investigate the existence and dynamics of planetary waves;

therefore, in order to obtain the best estimate of the wave

parameters and wave dynamics, we have incorporated the spot

measurements of temperature as well as the integral measurements

(that is the acoustic travel-time data) in our estimate.

The inversions of the data performed in this study are for the

retrieval of the planetary wave parameters and the planetary wave

field, and are intrinsically different from those previously done by

-.. Cornuel Ie (1983) and Cornuel 1e et al. (1985). The originality of

our inversions lies in that they give a time-dependent estimate of

the unknown field, the system involved is nonlinear with respect to

.......................
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the unknown parameters, and contains both acoustic and traditional

(spot) observations. Specificically, the system is 'inverted' for

the four-dimensional sound-speed perturbation field subject to the

different dynamical constraints constituted by the plausible models

of wave propagation. The inversions, therefore, besides producing

maps of the ocean structure, also test different wave dynamics

against the data for consistency and optimality. Due to the

nonlinear nature of our inverse problem, standard linear techniques

such as Singular Value Decompositions and Gaussian Eliminations are

not appl icable, so that we use iterative descent minimization

techniques to solve the problem.

In order to observe the waves, the forward problem of how the

observations of the dynamical field are related to the evolution of

the waves under different dynamical conditions must first be

resolved. This subject is pursued in Chs. 2 and 3. In Ch. 2, we

examine the theory of planetary waves by reviewing the literature.

We review the evolution of the waves at mid-latitude, and under the

possible effects of weak mean current, small bottom slope and weakly

nonlinear wave-wave interaction. An objective is to illustrate that

the space and time behavior is constrained by the modal dispersion

relationship and characterized by the wave parameters: wavenumbers,

wave amplitudes, modal amplitudes of the mean flow and growth

rates. In Ch. 3, we develop the model equations that relate the

data to the wave parameters that characterize the wave and mean-flow

induced sound-speed perturbation. We also describe the filtering
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and reduction of the data prior to the inversions. Furthermore, we

present three plausible dynamical models of the induced sound-speed

perturbation, w*iich have been fitted to the data to estimate the

wave dynamics.

In Ch. 4, we discuss the general parameter-estimation or inverse

problem. The goals are to relate and unify some commonly used

estimation methods, deterministic or stochastic, and to show that

there is a general estimation procedure, common to all the methods

considered, to obtain the optimal solution. The procedure

corresponds to the minimization of an objective function of a

weighted sum of products of residuals, that is a quadratic error

* . norm. We also discuss the error variance of an estimate and some

widely used numerical techniquer. for minimization. We further

present some simple measures of goodness of the fit for appraising

models.

Using a gradient method for minimization (Fletcher and Powell ,

1963), the wave parameters of each of the three plausible wave

models were estimated. This corresponds to wave fitting, and in

order to estimate the numb~er of waves, a range of one to five waves

was assumed for each model in the fitting. The results of the wave

fits and the identification of the optimal model and number of waves

are described and discussed in Ch. 5. Furthermore, the error

variance of the estimated wave and mean-flow induced sound-speed

perturbation, associated with the error of the optimal estimate of

wave parameters, is analysed.
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In Ch. 6, we first summarize the results of the wave fits and

couent on the dynamics, linearity and stability of the waves

observed. We then compare this wave fit with the MODE wave fits,

and from the results of the three wave fits, we make general

statements on the wave dynamics in the area occupied by the

experiments. We also compare the tomographic inverse method of

Cornuelle (1983) and Cornuelle et al. (1985) with our method, and

' analyse the ability of the acoustic, spot and mixed observational

- systems in observing the waves and mapping the ocean. We then make

concluding remarks on the investigation.

* The motion of the acoustic moorings, if not tracked, can be

misinterpreted as oceanic fluctuations in a tomographic inversion.

However, for economical reasons, it is highly desirable to know

whether reliable acoustic mapping of the ocean structure can still

be generated without the deployment of navigational systems for

tracking mooring motions, but rather through parameterization of the

S. mooring motions, as was done by Cornuelle (1983). As a secondary

contribution by this dissertation, a study of this engineering

problem is presented in Ch. 7.

In Ch. 7, we derive bounds on the error of the tomographic

sound-speed estimate in the presence of untracked mooring motions.

An important result shows that the error variance of the estimate is

practically invariant with the size of mooring motion but is almost

- always reaching the upper variance bound. The implication is that,

given a priori information about the field, the geometry of the

.*.* k . . . . . . . .I .

. . . . . .w .. . .,. . ,,.+ $ + .... , . .... ., . ,, . . . . . . . . .. . - A . . ~ . . . .P . ,
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tomographic array, and the noise level , the upper bound can be

evaluated to give an indication about whether it will be necessary

to track the moorings before the deployment.

Not to bore the readers who are experts on the subjects of

planetary waves and parameter estimation, or only interested in the

-~ data-model relations and the estimation results, we take this

opportunity to inform them to skip Chs. 2 and 4 in their reading.

These two chapters contain only review material . The literature on

the two subjects is vast, and our only excuse for writing Chs. 2 an d

4 is to define the mathematical notation used in this thesis. New

material and results are contained in Chs. 5, 6 and 7, and in part

of Ch. 3. The acoustic forward problem considered in Ch. 3 has

previously been studied by Munk and Wunsch (1979), Cornuelle (1983)

and many others, and the reason for the redundancy here is just to

make this presentation of the forward problem a complete one. New

material in Ch. 3 are the results of the analytical-mode

- - decompositions of the CTD data, the use of the modal decompositions

as a data reduction scheme and a demonstration of the transparency

of the higher modes to acoustic measurements.



21

CHAPTER 2

MESOSCALE PERTURBATIONS AND WAVE MOTIONS

In the open ocean, the largest portion of the total kinetic

energy is contained in the mesoscale frequency band. Mesoscale

perturbations or eddies have characteristic flow speeds of

centimeters per second, horizontal length scales of hundreds of

kilometers, vertical length scales comparable to the depth of the

ocean, typical oscillation periods of months, and westward phase

velocities. Over nonsteep and smooth bottom topography, eddy

currents are basically horizontal, the momentum balance is almost

geostrophic and the local dynamics are governed by the law of

conservation of quasi geostrophic potential vorticity.

Away from intense mean currents, lateral boundaries and steep

bottom topography, dispersive planetary (or Rossby) waves of low

frequencies and large length scales can propagate due to the

*latitudinal variation of the coriolis parameter. These waves are

. solutions of the linearized equation of the conservation of

quasigeostrophic potential vorticity. The linearization is valid

when the ratio of the wave period to the advective time is small

compared to unity. Under such circumstances, mesoscale fluctuations

in the flow field and the density field are direct consequences of

the propagation of planetary waves; the density fluctuations are in

turn related to temperature and sound-speed perturbations.

*:!~ : -. i? .i: i
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This chapter is intended to examine, by reviewing the

literature, the dynamics of planetary waves, and the underlying

dynamical and geometrical approximations used on the basic equations

of motions. Sources of reference are LeBlond and Mysak (1978) and

Pedlosky (1979) for the scaling analysis on the basic equations, the

derivation of the quasigeostrophic potential vorticity equation and

the general theory of planetary waves, Flierl (1978) for the

orthonormalization of the quasigeostrophic potential vorticity

equation and the derivation of the horizontal-structure equations

associated with the normal modes, and Longuet-Higgins et al. (1967)

for the theory of resonant wave-wave interactions. The mechanisms

for wave generation and dissipation will not be considered, the

focus will be on the evolution of planetary waves at mid-latitude,

under the influnence of the earth's rotation, and under the effects

of weak mean currents, small bottom slopes and weakly nonlinear

wave-wave interations. The goals are to derive relations between

perturbed dynamical variables and wave-parameters such as

wave-amplitudes, wavenumbers and wavefrequencies, and most important

of all, to carefully study how planetary waves propagate and

interact. Uur knowledge of mesoscale variability can be increased

if some dynamical variables are measured or remotely sensed and wave

parameters are then estimated.

!jiiiii
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2.1 Governing Equations For Mesoscale Motions

2.1.1 Basic Laws Of Conservation

The conservation l-:ws for an unforced, incompressible,

nondiffusive (in both heat and salt) and invicid ocean model are

(LeBlond and Mysak, 1978)

- 2 xv p + g(2.1)
d- dt p

dpp

d = O, (2.2)

and

.v. 0, (2.3)

where d/dt is the total derivative, all the dynamical variables are

functions of time and space, v is the velocity vector of fluid

particles relative to the rotating frame associated with the earth

that has a constant angular velocity vector w (its magnitude is

w -7.3xiO - 5 rad/s), p and p are the density of the fl uid and the

pressure acting on it, respectively, and the jvector is the

acceleration of gravity (its magnitude is g-9.81 m/s2). The
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conservation 3f momentum is expressed in (2.1), (2.2) is a statement

regarding the thermodynamic properties of nondiffusivity and

incompressibility, (2.3) expresses continuity (conservation of

volume) and is a combined result of conservation of mass and (2.2).

In the static state where v=O and p=pO is a function of depth

-z or the radial coordinate only, the hydrostatic pressure pO is

related to po by

dpo(z) = - po(Z) g. (2.4)OP

We would like to point out that the static state is generally

different from the mean state, i.e. they would be the same only when

there is no mean motion. In a nonstatic state where the fluid has

motion, the pressure and density depart from hydrostatics to become

p=pO~p' and p=pO p', and (2.1) and (2.2) can be rewritten as

dv 2 v _i p , +p (2.5)
dt p*

and

dp ' dp0
Sw =0, (2.6)

dt dz

-1 . 7 .
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respectively, where w is the vertical or radial velocity. In (2.5),

p is repl aced by a constant reference density p*-l g/ml (the

Boussinesq approximation) because the variation of p in both time

and space is only about one percent througout the ocean, hence the

replacement would insignificantly alter the coriolis and inertial

forces.

2.1.2 Scalings And Approximations

Scaling analysis can be employed to simplify the complicated

basic set of equations (2.3), (2.5) and (2.6) to a set that

describes only mesoscale motions at mid-latitude. The method of

simplification which is described in detail by Pedlosky (1979)

consists in, as a first step, the transformation from the spherical

coordinate system to one with x,y and z coordinates representing the

eastward, northward and upward distances, repectively, measured from

the transformed origin located on the surface of the ocean, at a

latitude a0 where the area under study is centered. The

transformation includes the Taylor expansions of the trigonometric

functions of latitude o., wich appear in the equations because of

sphericity, about 90 in powers of x and y. The components of v

are now u, v and w corresponding to the x, y and z directions,

respecti'ely. As a second step, the independent variables are

scaled and the dependent (dynamical) variables are normalized so

that a set of nondimensional equations is obtained. The scalings

-i:i? : !i,;i! i-i: : . .-- -..!.; i .. .. .ii l. . . . . .-; .. . . ,. . i_ i!.li ,
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and normalizations are done by using observed characteristic

lengths, times and flow speeds, and also by using observed or

estimated magnitudes of w, p and p'. The quantities used for the

scalings and normalizations are shown in the second row of table

(.1). At mid-latitude, a typical horizontal length scale is L-100

km, a typical vertical length scale is H-1 km and a characteristic

horizontal flow speed is U-5 cm/s. From continuity, an estimate of

an upper bound for the magnitude of w is UH/L and this quantity is

used for its scale. It is important to point out the way that p

and p' are scaled is due mainly to our perception that the motions

are almost geostrophic and hydrostatic.

Next, the scaled dynamical variables are expanded as

perturbation series in powers of a small parameter e. Then

equations that describe the temporal and spatial behavior of the

nonvanishing leading terms in the expansions are sought. The small

parameter is the Rossby number and, approximately, two other

important small geometrical ratios:

-. U/foL - L/R H/L -10 - 2,  (2.7)

3- 4

where R-6.36xlO3 km is the earth's radius and fo10" rad/s is

the coriolis parameter f=2usirn evaluated at -O0. The smallness of

the Rossby number U/foL and the aspect ratio H/L indicates that

the flow is predominantly geostrophic and horizontal. The neglect

of higher-order terms emphasizes that our interest is in local

-a-7

.. " .,

* - "- .
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dynamics, with the localization in space explicitly indicated by the

ratio L/kR.
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tabl e 2.1

Summary Of Orders Of Magnitudes And Scales

v ar iabl1es x~y z t u,v w p p'

scaling or L H L/U U UH/L P*f 6JL P*f dUL/gH

normal izing factor

order of magnitude U EUJH/L P*f UL P*f UL/g H

order of magnitude of error EJ C2%H/L £P*f 0UL Cp*f 0UL/gH

in quasi geostrophi c solution
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2.1.3 Quasi geos trophy

After collecting nondimensional terms in the equations with like

powers of e, we find that to the lowest order in £(that is order
0), the motion is geostrophic (equations will be put back in

dimensional forms),

(u,v) = 1 ap' ap), (2.8)

hydrostatic,

a P'= _ , (2.9)

az

horizontally nondivergent, and the zeroth-order w vanishes. Note

that p'/p*f 0 is a geostrophic (zeroth-order) stream function and

. p I/P*fo is the geostrophic (zeroth-order) relative

vorticity as indicated by (2.8) ;7=a2/ax 2+a 2 /ay 2 is

the horizontal Laplacian. Equations ( 2.8) and ( 2.9), in a sense,

*are not too interesting because they do not provide any new

*; information nor information regarding the evolution of the

perturbations in time. However, it is clear that w is more

accurately of order EH/L, which is even smaller than the original

estimate. The precise order of magnitudes of the dependent

variables are summarized in the third row of table (2.1).
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Although w is very small (a first-order quantity), it must be

taken into account in order to study mesoscale dynamics. In fact,

by considering also the first-order equations in c, it is found that

changes in the vertical component of the zeroth-order absolute

vorticity (planetary plus relative vorticities) along a particle's

path line are produced solely by the streching of vortex tubes or

the small divergence of the horizontal flow aw/az:

d H 1 V2 ' + f f =f 0  (2.10a)

where

dH " + a + 1 ap'a + ap'a 2.l1b
t at ax y at (9O 7yax a xay

As a result of the geome tri cal scal ings and the neglect of

higher-order terms, the vertical planetary vorticity or the coriolls

parmeter f in (2.10a) is eval uated l ocallIy as

f ' By. (2.11)

where s=2wcose /R (-2x1V-8 rad/s/km) is the latitudinal gradient

of f evaluated at ev It is also obtained that w is related to p'

by

-:~~ - A' 1 ap')(.2

7..
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where

N(z)'=l g apO(z) (2.13)

N(z) is the Brunt-Vaisala frequency that characterizes the stability

of the water column and is assumed to be known from density

measurements. Obviously, the vertical displacement of isopycnal

surfaces (or isothermal surfaces or surfaces of constant sound

speed) is, from (2.12),

ap' (2.14)

-- We would like to add that in collecting terms to like orders, we
have used the fact that the Burger's number (Mt/Lf 0)2 is of

20
order one since N2-10 - 5 (rad/s) 2 .

The consideration of quasigeostrophy, that is the small

deviation from geostrophy or the small w, leads further to the

derivation of a single equation for the stream function in a closed

form (the equation is obtained by combining (2.10) and (2.12)):

H (7 2 + a a ,+ dp 0. (2.15)
H z N az -.

HE .7 7

N j • . .. " .-
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Since it is known that the potential vorticity (Vxv+2)'7p

is conserved following a fluid particle in an incompressible,

adiabatic (invicid and nondiffusive) and unforced ocean (the proof

can be found in Leblond and Mysak, 1978), it is interesting to point

out that (2.15) is simply a statement of this conservation law but

. following from the applications of the geostrophic, hydrostatic,

geometrical and Boussinesq approximations. Therefore, the governing

equation for mesoscale motions is the conservation of

quasi geostrophic potential vorticity.

We have already derived relations between p' and other dynamical

variables. Once (2.15) is solved for p' with the appropriate

boundary conditions, other dynamical variables are then known from

(2.8), (2.9) and (2.12). The solutions are not exact but are

zeroth-order approximations for p',u,v and p', and a first-order

approximation for w, hence they are accurate to within about 100c

, percent, that is about one percent. The order of magnitudes of the

errors in the quasi geostrophic solutions are summarized in the

fourth row of table (2.1).

- d. -
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kEl 2.2 Boundary Conditions

The boundary conditions are the continuity of pressure and

displacement across the disturbed ocean surface at z-s(x,yt), and

the vanishing of the normal velocity at the rigid bottom at

z=-D+b(x~y); D is the nominal depth of the ocean and D>>IsI and IbI

However, it is desirable to scale and approximate these conditions

so that they can be replaced by a simplified but consistent version

that applies to p' at z=O and z=-D instead. Otherwise, it would be

a very difficult task to solve (2.15). The simplifications will be

detailed in the following sections.

2. 2.1 The Surface

The exact conditions are, at z--s,

POW p' (xyzt) = Pa' (2.16a)

and

w = ds/dt . (2.16b)

The atmospheric pressure pa can be assumed constant as far as the

ocean is concerned, because the magn 4 tude of the variation of pa

is much smaller and the length scale of variation is much larger.

.* * . .r -"i-22~~~~ ~~~ ~~.. ."- . . . . . . . . . ..,,..-..-.....- ii " " '"- , --- . - -" -.- "." "- . . --- : "
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After substituting the Taylor expansions of the dynamical

variables about z=O in powers of s in (2.16), and then dropping

- nonlinear terms in s, p' and w (so that only the largest terms are

kept), we obtain, at z=O,

p' pogs (2.17a)

and

w dHs/ dt (2.17b)

with the uses of (2.4) and the identity pO=Pa . The above two

equations can be combined to give,at z=O,

w dH ( p  ) . (2.18)

An order of magnitude analysis (by using table (2.1)) shows that

the R.H.S. of (2.18) is of order dL f /gH)(UH/L), but it is

also of order 2 (UH/L) since L2f2/gH (estimated with the

typical values of L, f 0 , g and H) is approximately equal to E. In

conclusion, the R.H.S. of (2.18) that introduces only a second-order

correction to w can be consistently discarded without affecting the

quasigeostrophic solution. The result is the rigid-lid

approximation, that is

. *%
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O4

w (x "Y'O't) =0, (2.19)

or equivalently,

d H -1aP) =0 at z=0, (2.)

-dt p*N 2 Tz

as obtained by using (2.12).

2. 2. 2 The Bottom

The exact boundary condition at the bottom can be written as

w =u ab/ax + v ab/ay at z=-D~b. (2.21)

Substitution of the l inear expansions of u, v and w about z=-O in b

and dropping the nonlinear terms in w and b in (2.2 1) gives

w u Wbax + v Wbay at z=-D. (2.22)

In order for quasi geostrophic theory, which requires w to be of

order e-UH/L, to remain valid, we must restrict the magnitudes of the

slops t beapprximtel equl t orsmaler handi/L Onth
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other hand, if the magnitudes of the slopes approach 2H/L, we can

consistently set w=O at z=-D without affecting the solution.

In using (2.8), (2.12) and (2.22), the condition for p' can be

written as

dH '1 P') = 1 J(p',b) at z=-D, (2.23a)

where

ap'ab ap' ab
J(p',b) -(2. 23b)

ax 3y ay ax

is the Jacobian operation.
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2. 3 Normal Modes

Ultimately, we want to solve the nonlinear quasigeostrophic

potential vorticity equation (2.15) subject to the nonlinear

boundary contitions in (2.21) and (2.23). However, if the method of

separation of variables is used to solve the linearized problem in

the case of a flat bottom, a set of z-dependent eigenfunctions

Si (z, called the normal modes for p', are found. They obey the

vertical (structure) equation:

d ( d fi 0 iif =O =0, 1,2,. .. (2.24a)

dz N2 dz

wi tn

df i (0) df.(-0) (2.24b). 0 i=O, 12,..(2

,'-. -/2.
where x. is the corresponding eigenvalue. X1 is called

the radius of deformation of the ith mode. Since the fi(z)'s

constitute a complete set of orthogonal functions of z, the solution

for the nonlinear problem can be cast as

P, = Pixyt)f (z). (2.25)

an -A -Z

i .

. . . -' ., w -,,'. - ".-+,, ,, ,h',+ ' ,< ." ' . . .. . . " < - , - " " " . . I" ' ' " + +
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I n v iew o f (2.8), (2. 9) an d (2.14), we c an als o wr ite

* (u,v) u [x Y u1 xyt )f (z) , Zv(xY,t)f (z)], (2. 26)

' Z 0 .p(x Y t)f' (Z) (2.27)

an d

=Z ri(xy,t)h (Z), (2. 28)
ii

where f 'i -f.dz and h -Df f.'/N. Fu thermore , the

modal-amplitude functions are related by

(ui~~ IV (a -i, a Pi (2. 29)

P - (2.30)

an d

Ti P ~ P*f 2 D (2. 31)
1 i 0

Because the vertical displ acemient n is intimately related to the
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commonly observed sound speed (or temperature), it is used here in

pl ace of w.

In (2.25) to (2.28). the vertical structure of p', (u v P and

n is decomposed into normal modes. The modal decompositions can be

achieved by first solving the Sturm-Liouville problem in (2.24) for

the fi (z) 's (the normal modes for p' ) and xi's with a known

N2 , one then evaluates the f'i(z)'s and hi(z)'s with

fi(z)'s, accordingly. On the other hand, one can first obtain the

normal modes for n by solving an equivalent eigenvalue problem:

di 2h.. N hi = 0; i=0,1,2,..., (2. 32a)

dz 7

with

hi (0) : hi (-D) 0 0; 1=0,1,2, .. (2.32b)

This is done by Mooers (1975) in his investigation of linear waves

and the corresponding sound-speed perturbations in a flat-bottomed

ocean with no mean flow. Equations (2.32) can be derived directly

from (2.24).

The sound-speed perturbation field dc(xy,z,t) is created by the

vertical displacement of the surfaces of constant sound speed:

C= - d d CA(z) ], (2.33)
dz

I , , .. ... ., .. , .., .. .. .._ ... , _ .... .... ...'-'I,-'- : '- ":, -'- "' " -: -' --. -'L --' -' -' ..-' -' .' .,-" "--i ," " -'/ ? , ili i/112 ',' i'- ,:" i'J."i'''.ii.i'--i'i''i', .4,:
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where co and dcA/dz are the mean profiles of sound speed and its

adiabatic gradient arising from the adiabatic expansion or

compression of a rising or sinking volume of fluid, respectively.

The quantity in the bracket is the potential gradient of sound speed

(Fatte et al., 1979). Unlike the case for p' , compressibility must

be taken into account in the evaluation of 6c because the adiabatic

gradient of sound speed is not small in comparison with its

potential gradient and adiabatic gradients do not contribute to

fluctuations. A modal representation of 6c is

6c= - ni (x t) fogi (z (2. 34a)

with

d
fog (z) = hi (z) ]. (2.34b)

fogi can be interpreted as the vertical anomaly of sound speed

per unit displacement of the ith mode. The buoyancy frequency

profile N(z) measured during the tomographic experiment in 1981 is

plotted in Fi g. 3.3, from which the first three baroclinic normal

modes for p' (or (uv)) are evaluated and plotted in Fig. 3.4. The

corresponiing normal modes for n and 6c are also evaluated,

renormalized to have maxima of unity and plotted in Fig. 3.5 and

3.6, respectively.
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The description of the modal solution for quasigeostrophic

-" -motions would be incomplete without the horizontal (structure)

equations that govern the modal-amplitude functions pi(x~y,t).

Briefly, (2.15) is multiplied by fn (z) and p' is replaced by its

' modal representation in (2.25). Integration along z is then

performed to eliminate the z-dependence of the equation. This

elimination is accomplished with the use of the orthonormality

con di ti on

0
fi(Z)fn (z)dz = 6in (2.35)

f-D

where 6 in is the krononeker delta. For more details regarding the

procedure for the orthonormlization, one can consult Flierl

(1978). The resulting equations are

(V_X )+Ba 1 2

at H an Pn .. inEj (w naP a--F i j

= f (-0) (p,bl)f(-D); n=0,1,2,..., (2.36a)

where i

0
£1j = fi(z)fj(Z)f (z)dz. (2. 36b)

Df-D

In general, the modes are coupled becu ,, they interact with the

bottom and with each other so energy can leak from one mode to

another. But in linear theory and in the case of a flat bottom, the

modes are decoupled.

r" -..L.,..-,,-,..""."," ". ."q -i "." .' " ... .," - " _ ." .'. . ,'" .'. ,' . ." ." " - -" ".' "4



42

2. 4 A Mean State

Let us now introduce a depth-dependent weak mean current v(z).

By "weak", we mean

i _<< U, (2.37)

so that _ is small enough to disallow dynamical instabilities. The

mean current can also be decomposed into normal modes:

,= ( nfn(z) W f fn(z)]' (2.38)

n n

where n and V are the constant modal amplitudes of the

n n
eastward and northward mean currents, respectively, in the nth

mode. In general , the kinetic energy of the lower modes dominates,

so that the mean current can be parameterized by only a few modal

amplitudes, and only these modal amplitudes appear in the

horizontal-structure equations to represent the effects of the mean

current on wave propagation. From the geostrophic relation we know

that the associated mean variation of pressure is

Z= fn() (,-2.39a)

n

. .. o- . - -..o . N. . . ... . . . . .
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wi th

S'n(x 'y ) : Y ). (2. 39b)

Of course p' must satisfy the time-independent quasigeostrophic

potential vorticity equation (2.15), implying that the mean

modal-amplitude function p'n must satisfy the corresponding

horizontal equation (2.36a). Note that there are mean variations of

p, n and 6c as well, and a zonal mean current over a flat bottom is

always a possible mean state.

Let us denote the modal amplitude function of the fluctuat'ng

-pressure in the nth mode by wn such that

p n =I'n(X y) + n(X y1t). (2.40)

It follows that (2.36a) can be written as

2ii: m+ 
Ei +, 2_j+X

a 2 )+a_ ]1 Z ~ 2n

+T bijn[i, '2 j] = - (-D) fi(-DlJ(ib);
eJ inHi

n=0,1, 2,.... (2.41)

In the following analyses of wave propagation, we restrict the

bottom slopes bx=ab/ax and by=ab/ay to be constants. This is

tne same as requiring the nonlinear terms in x and y of the Taylor

series expansion of b about the origin to be of order E
2H/L in

distances of order L. In addition, we require small slopes such that

_ " . . 4 -- _.4 - ,. , . . -- 4 ,4, - . ' .. .. . . . -. . . . 4 .. . . - " . . . -. .
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lbxI and I~y << dilL, (2.42)

for preventing the existence of bottom-trapped waves.

OW

-1 A-
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'- 2.5 Dispersive Primary Waves

Previously, McWilliams and Flierl (1975) have shown that over 90

percent of the kinetic energy in MODE was contained in two empirical

orthogonal vertical modes that closely resemble the barotropic and

the first baroclinic modes of Rossby waves. Richman et al. (1977)

have shown that about 90 percent of the potential energy, again in

MODE, was contained in the first three baroclinic modes, with 65

percent of the energy being contained in the first mode alone.

Moreover, by decomposing the CTD profiles obtained in the

tomographic experiment into the normal modes, we have consistently

found that the potential energy of the first mode dominates (Ch. 3,

Sec. 3.3). Therefore, without discarding the major features of

mesoscale perturbations, we can set 0nO for n>1 in the horizontal

equations (2.36a). The equations consisting only of the lowest two

modes can be written as

LO(VO)= -Co( I) [J(iro,H O)+J(HI,7I)] H2.43a)

and

2 2
L( wI) = -CI( r) - Ji'7 it Xd (  O) (2.- 43bl l )J(  I ' r H

J; "WO H 1 . .... 1 2.2 " ( '  43b)
.;.~ ~~~~~ ~~~ .. F....O " . ...(-.
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wh er e

a a - aa_ a f a a
L + 7 (by -bx  ), (2.43c)

0.' .7 + - 0 - H-0 at"ax ax ay a ay

L a (7 _x) a a a 2 a a 2

1 tax x ay 1-- ax y
"+ f 0 2( a 3

f 1(-D) (by -bx) (2. 43d)
F1  ~x ay

and

"" a a+f a
-2 a aC +V)(V+n)+ fl(-D)(b -bx ); n=O,1, (2.43e)n~ 7x1 )7 n-lY x a

are linear operators (note that xO-0). Before seeking the wave

solutions for ir0 and ir 1 , we make the following observations from

(2. 43): (1) modes are 1 inearly coupled as denoted by Cn( im)

because the fluid motions interact with the mean current and the

bottom slopes, and (2) just like the mean current, the current

associated with a wave can advect the vorticity of other waves as

denoted by the Jacobians, hence creating nonlinear effects.

The advection of vertical planetary vorticity south to north,

which is proportional to the largest term Baw lax in Ln( ),

-.. is responsible for the propagations of planetary waves. Whether the

S linearization for the wave motions is valid or not depends on the

smallness of the ratio, v, of the magnitude of nonlinear terms to

- * . . . .- **

*-. - .**.-.. V . -~ . . . . - * * 4 . - -
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the magnitude of BaTr /ax. Qualitatively, the nonlinear terms aren
of order and Bain/ax is of order Bp*f U. Thus

we obtain, approximately,

" L~2 .
v - U/ (2.44)

By using the typical values of U, L and B, we obtain v-0.25. This

is not a small value when compared to unity so that nonlinear

effects could be important. However, quantitatively, v can be much

smaller depending on the wavenumbers of the interacting waves. The

quantitative estimation is defered to Sec. 2.6.1. Let us assume for

the moment that v<<l. By the assumptions of small bottom slopes and

weak mean current, we know that the ratio of the magnitudes of

C ( mir) to Ln(i n ) is much smaller than unity, and forn m n( wn

convenience, let us assume that this ratio is also of order v so

that we can construct the solution for rn as a perturbation series

of powers of v such that

(n = + ( ....... (2.45)

with (i )/ (i) V. We will call the zeroth-order
n n

solution w(0) and the first order correction r(i) then n
primary and secondary perturbations, respectively.

-

.. . .. .. . . . .. . . . .. . . . .
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In the zeroth-order approximation, the horizontal equations

(2. 43a, b) are linearized and decoupled:

L () = 0 ;n4 1. (2.46)nfn

2.5.1 Dispersion And Phase Velocity

Equation (2.46) admits a free-wave solution. The properties of

. these waves can be investigated using a triple Fourier transform.

Let the complex spectrum (or the Fourier transform) of the

modal-amplitude function irn (x y ,t) be bn(knsl n1an) such

tha t

7r() (xO ',t)= (k e i kelkn x+I ny- n t) dk ndln du (2.47)n nn~n"

The spectrum shows how the pressure in the nth mode is distributed

in the waven uner-frequency domain, the ampl itude of each individual

wave being infini tesimal in a continuous spectrum. In the case of a

S discrete wave in the nth mode with wavenunber vector (k, ) and

frequency ablwould consist of two impulses with equal'"" I b

amplitudes located at (k,la). The area under them is the

amplitude of the wave.

8y Fourier transforming (2.46) and then cancelling n, we find

nsI

~ ...... .. ~ A....A.. A.. ,A.. ~ ... - - - - - - - -
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that the waves in the nth mode (n=0,1) must satisfy the dispersion

rel ati on

A (k~ ,1 n o)=0 (2. 48a)

where

2 22

= [k(%O k 11 (2. 48b)

2 1 +1
=a ff-Ek 1 n1 1. (2. 48d)

an d

n

By rearranging, we ge t

-k (B+6B

(crn+6c ) ______(2.49)

k2 12nf+l+

.......... n n n .-.-
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As expected, the mean current causes Doppler effects given by

s 's, which vanish when there is no mean current. It is seen

" that the propagation of barotropic waves are not affected by mean

baroclinic currents, and the contributions to Doppler shifts from

S.. mean baroclinic currents to the wavefrequencies are minor for

baroclinic waves with wavelengths much longer than the radius of

deformation x-1/2, (that is for waves with

2 2"i 'k +1 <<X I )

It is the small latitudinal variation of the coriolis parameter

(or the 8-effect) that allows the propagation of waves with

subinertial frequencies by changing the relative vorticity.

However, the 8-effect on wavefrequencies can be modified by 6s in

the presence of bottom slopes. This is so because the slopes modify

the vertical velocity and hence change the relative vorticity also

(see (2.10a) and (2.11)). The modification of frequencies caused by

the longitudinal bottom slope b is small when waves are

propagating zonally, that is when ln/kn<<l. The a-effect is

enhanced or reduced depending on the direction of rising (or

falling) topography and the direction of wave propagation. Because

the energy of baroclinic waves is trapped more in the upper water

column than that of the barotropic waves, baroclinic waves are less

2 affected by the slopes (note that fl(-D) <f( -D)=1 in (2.48d)).

1- 0
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The phase-velocity vector of a wave in the nth mode is

a +5B 6n k B+6B 6o
c = ( n ) = [_( + ), _) _n n]. (2.50)

k n k2 2 x kn in k + InkII
n n n n n +n

The east component of c is almost always negative because of

s, all slopes and weak mean current that usually imply B> 66 n  and

2+ )> 16 nlkni  This feature of westward phase

propagation is generally observed in experiments.

By rearranging (2.49), we get

k .1 +6B n )2l2 1 8+60 n 2_ n

) 2n -- -- ) (2.51)2'" ( n n+6Gn n a n+60 n

n n

Since k and I are real for propagating waves, the R.H.S. of

(2.51) must be positive such that

an < (8+6%n ) - 6an ,  (2.52)
2

implying that there is a frequency limit for wave propagation. In

general , the upper cutoff frequency depends on mode number,

wavenumber, mean current, and bottom slope. Because

I>>x 1 V2, the cutoff frequencies for baroclinic waves

are much smaller than those of barotropic waves.

i'1
.., ....- ... ; .. ! ... i! _i .i !, ..i! .i i ..i.:.. - i i-!ii ii i .:.- i i •-1;
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The representation of ir by a continuous sum of its

wavenumber-frequency components distributed in the three dimensional

wavenumber-frequency spectrum 4 (k ri 1l an is adequate but

nolonger necessary due to the dispersion relation. A full

description of the fluctuating field can be provided just as well1 by

* the simpl ier two dimensional wavenumber-spectrum 6n (knll n)

such that

(U T ~ k I )e i (k nx +ny-Ont) dkndl n*(2.53)

n n -n
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2.5.2 Narrowband Processes And Group Velocity

For fluctuations due to narrowband processes in the wave-nunber

spectrum, fJn (kni ~)I contains pulses of finite width and
(0)

Tr can be represented by a sum of modulated waves. With a

total number of Nn pairs of pulses in I,6n and with the ith pair

being located at *(kni1ni ), we can write

N

(0)n(O (x y,t) a ni (x y ,t )cos (k nitn ), (2.54)n = nin iy -an i tYni i

i1=1 ,

where each modulating amplitude (or envelope) a is slowly

varying in space and time as compared to its carrier which has a

phase constant yni and a frequency ani that satisfies the

dispersion relation. The slowly varying nature of ani in x and y

* is implied directly by the narrowband processes in the wavenumber

spectrum; the slowly varying nature in t can be verified by

investigating the group velocity.

While the phases of the carrier waves are propagating with the

phase velocities, the phases of their envelopes are propagating with

the corresponding group velocities. The group-velocity vector can

be evaluated by

v (kn,ln) = (aan, aan). (2.55)

n n

- .- -
. -
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The result (which is not shown here) is a complicated vector

function of kn and inP indicating that in general the modulating

envelopes can propagate in any direction and that the group speeds

. are much smaller than the cc-responding phase speeds. Since ani

is varying very slowly in time and space, nO) can be

approximated locally by a sum of discrete waves with constant

ampl itudes ani, where ani is equal to the area under the ith

pair of pulses in

. .- .. ..

-. 2.•.
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2.6 Mode Coupl ings and Nonlinear Interactions

Since the coupling and nonlinear terms in the horizontal

equations are not identically zero but finite, intermodal wave

forcing and nonlinear wave-wave interactions must occur during wave

propagation. In order to investigate coupling and nonlinear

effects, we must proceed to the next order in v.

To order v, we have

(0) 1 (0) 2 (0) (0)..iLD (11 = CO( W J 'rOHTO )+J(,f 1 '1 HWI 1
S*To-1 (2.5 6a)

and

L ()) _C (0)) 1 ( ) 2 (0) (0) 2 (0)
1 --C E ,VH(W [+J(T ,VHO )] W..

+1 (0) 2 (0)
J 1r0  (VHw~ i .2.56b)

It is seen that the zeroth-order solutions i are now the

nforcing mechanisms for the first-order terms ir(1). This_

implies that secondary waves of smaller amplitude can be generated

by the primary waves through their nonlinear interactions and the

Slinear coup] ings. If some of the forced (secondary) waves are at

resonance, that is their wavenumbers and frequencies also satisfy

the dispersion relation (a secular effect), their amplitudes will

not remain small but will grow, and at some time will become

dominant among all the forced waves.

. .

",. . o'. . b . . o . . .. ,. . , . , , - .-
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Before going into the subject of forced and resonant waves in

more detail , we will first come back to the issue of whether the

effects of the nonlinear interactions of primary waves are small or

not. The issue is important because the validity of the asymptotic

solution constructed as a perturbation series in powers of v depends

on the smallness of v.

2.6.1 Magnitudes Of The Nonlinear Terms

It was mentioned earlier that v is of order U/L s-0.25 and is

not qualitatively small. But quantitatively, it can be smaller

depending on the wavenumbers of the interacting primary waves. This

fact will be demonstrated in this section.

There are three cases that we need to consider. They are the

interactions between (1) two barotropic waves, (2) two baroclinic

waves and (3) one barotropic and one baroclinic wave. We do not

need to consider cases for more than two waves because each

combination of two can be considered seperately. When we say a

wave, it could imply either one wave that is associated with a

discrete (or narrowband) spectrum or one infinitesimal group of

waves centered at some wavenumber in a continuous spectrum.

In cases (1) and (2), the only nonvanishing nonlinear term is

(0) 2 (0)
proportional to J( VHn ) with n=O and n=1 for

the first and second cases, repectively, and

n cosan + acos n2 (2.57)n.. . . . ,

?. .:+
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where a ni is the amplitude and OniWkniX+1 niy-nit+yni is

the hase of the ith wave; i=1,2. Note that

a ni n (kni'ni)dkndln in the case of a continuous

spectrum. The nonvanishing Jacobian term can be cast as

(0) 2 (0) 2 2J( 1O),vHT )=J(anlCosenl, anlcosenl) +J(alcoseal, anCos 2 )

+ J(a c coso 2 a OG +~ O~ 2n2 n2 Han1n1 n2+~ac~ 7Han2 co0s&n2)
(2.58)

But since

J(anic°Sni Cos ani coseni) = 0, (2.59)

(2.58) becomes, after performing the Jacobian operation,

2" 2 2 2 2J( n 'r n -a n1la 2k nl + I1 n1 k n2 ~ n2 I n1l'kn 12

x[cos(&ni+a n) -Cos(&l-n 2 )], (2.60)

It is seen that the magnitude of the nonlinear term depends on the

difference of the squared magnitudes of the wavenumber vectors and

the difference of the directions of propagation; the smaller the

differences are, the smaller the nonlinear effects. In the limit

when the waves have either the same wavelength or the same direction

of propagation, there cannot be any nonlinear interactions, and the

waves will be an exact solution to the quasi geostrophic vorticity

equation. From (2.59), we notice that a single wave is always an

exact solution.

..- ..-..
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In case (3), with

-O = aolCOseo 12.61a)

and* 1o1
1 1 a a 11cose11, (2.61b)

the sum of the nonvanishing nonlinear terms is proportional to

J d , (W _xl) O]+J(, 'VH ) = aOla1lk1  1 11 0 1 )

11 11 1 01 0 l1

(2.62)

It is found here that the magnitude of the nonl inedr term again

depends on the difference of the directions ,f propagation, and also

depends on the difference of (k2 i+ 2)+X and11 11 12+2(ko 2l Similarly, the smaller the differences are,

the smaller the nonlinear effects. There would not be any nonlinear

interactions if either the waves of different modes were propagating

in the same direction or the difference of the squared magnitudes of

the barotropic and the barocl inic wavenunber vectors were exactly

1.

In conclusion, inorder for the (asymptotic) theory of weak

wave-wave interactions, which predicts the propagation of forced

waves and resonant interactions, to be applicable, the wavenumbers

of the primary waves must be so arranged that they make v<<l.

l- -,A.'-
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2.6.2 Forced Secondary Waves

In this and the following sections, we will discuss only forced

and resonant waves that correspond to two primary barocl inic waves.

The other two cases can be investigated by a similar procedure;

their resul ts are summarized in tables (2. 2) and (2. 4) wi thout

futher discussion. For the case of more than two primary waves, it

is obvious that the forced solutions due to each primary wave in the

linear coupl ing terms and each combination of two primary waves in

the nonl inear terms can be summed together to give the total

s ol uti on.

Secondary perturbations are driven by the primary dispersive

waves. For two existing primary baroclinic waves such that

(U)=a 1 1cos e11 +a 1 2 cos e1 2 , (2.63)

the governing equation (2.56) for the secondary perturbations becomes

1112 2 2 2 2
11012 12-11+1 ) 2 l 2

., °

X (k 12 1 11-k 11 1 12)[cos(alii+0.12) -cos(a 11-0 12) ] (2.64a) '

and

(() 11 12[2 2 2 2
1 1N 1 - 1 -k1+ 1 (

- x[cosa (11 +G 12 -Cos (&011 -012)] (2. 64b)

, °C'-i

m... . . .. . . . . . . . . . . . . . . . . .
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Note that beside secondary barocl inic perturbations, secondary

barotropic perturbations are also possible due to mode coupling.

(Note also that mode coupl ing can modify the frequencies of the

primary waves.) While the forcing produced by linear coupling has

components that oscillate with the same primary wavenunbers and

*. frequencies, the forcings produced by nonlinear interactions have

components that oscillate with the sums and differences of the

primary wavenumbers and frequencies.

The equations for the in s are 1 inear but nonhomogeneous,~n

containing simple harmonic forcing functions in space and time;

therefore the steady-state solutions have the same harmonic forms as

the forcing functions. By expecting a phase lead or lag of 900, we

can write down the solution as

4 
'

1) = b sinai (2.65a)

an d

2

1. -1 bl sin ll , (2.65b) -i

where a 01=aii= 1112 for im1,2 ,u03=Gii and

With the use of (2.64), the wave amplitudes bni are

eval uated as

14

A*
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= -Q 1(2.66a)

-02Q (2.66b)

U[C k11 +vj I (k 2 +1 2 -f/~ (D(
b0 11 11 11 0 1 y1-x1

A0 (k1 ,11 11 11) 2.66c)

12 12 0 1 y1-bx11)

b ~ 11 (2.66e)

A1( 11 k1211 11+ 12 11al 2)

an d

b 1211 (2.66f)

voh er e

= 11 12 [(k 2 +12  )-(k2 2 121 11-1 k 11 2  (2.66g)
2 P~f 11 11 12 12 1 l 11

. .. -
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The secondary perturbations consist of forced waves. In this

case, there are four forced barotropic waves and two forced

baroclinc waves. Their amplitudes are a factor v smaller than those

of the primary waves except at resonance. Moreover, they need

continuous forcing to exist, that is the primary waves must be quite

permanent for the forced secondary waves to exist.

2.6.3 Resonant Secondary Waves

When a forced wave of the nth mode with wavenunters

" (knf lnf) and frequency anf satisfies the dispersion relation

Sn(knnf,nfanf) = 0, (2.67)

resonance occurs and (2.67) is the resonance condition. At

resonance, the expressions shown in the last section for wave

amplitudes are nolonger valid because the denominator is identically

zero and the resonant wave amplitude is growing linearly in time.

The two forced barotropic waves with phases e1 1 and o 12

cannot be resonant because the wavenumbers and frequencies that

satisfy the baroclinic dispersion relation can never, at the same

time, satisfy the barotropic resonance condition due to the form of

the dispersion relation. However, the other four with

=(n fn f) (killk12,111*112 ), anf=11to12 and n=1,2

* :-. * .*
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are possible resonant waves. Suppose resonance occurs at n=1. Then

at the sums of the wavenunters and frequencies, there will be a

resonant barocl inic wave having the form bl(t)cos(ll+%12 ).

With the use of (2.64b) we find that the growth rate of the

ampl itude is

. , ~ db ll1 111 c111Q (2.68)

"- (k f+f + )

The growth rates eval uated at resonance for the other three

possibilities are shown in table (2.3).

It is interesting to point out that the growth rates do not

depend on the mean current and the bottom topography, but are

proportional to the magnitudes of the corresponding nonlinear terms.

. . -7o
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Tabl e 2. 2

Interaction Between 2 0th-Mode Primary Waves

mode primary wave secondary wave resonance gr owth

amp i tude phase ampl itude ph as e ra te

0th a.1 90 9 0oi" possible 901

a0 2  02 402 001-02 possible 902

IV.1st b 1 'ino

b2 no

9Of1 k0 1x~l 0y-u0 1 t+y0 1
02 U2 02 02 02

2 +2 -k2 +12 '

Q=a 0 Ia02C(ko 1 l 01 02 02 1k021 0 1 "o 110 2)I 2 p~f 0

b-- Q 90=Q
0 _ _ _ _ __ _ _ _ __ _ _ _0 2 2

02 0 k 01k 0 2 l0 10 2 y0 1a 0 2 ) 02 (k 0 1 0 2 ) 0(l00l2)

b 11 02 02 02 02 02 02

12
02 02 02



65

Table 2.3

Interaction Between 2 1st-Mode Primary Waves

mode primary wave secondary wave resonance growth

amp] i tude phase ampl i tude phase rate

Oth b01  1 1+" 1 2  possible go1

beli-%2 possible go2

nobo 3 9l11

04 12 no

1st abl e11+ 12  possible g1l

a12  12 b12  81112 possible 912

e 1 ,2k IxIl 11y -,11 t Y1 1

12 12 12 12 12

2 2 2 2

bo -Q -01= 2I A(k 02 llY-l 2+ 2

02 A0( 1 k 12 " 1 If12 'a -a 12)0 k1 k 12) 11--~ 12~

[(Uk2 -k2 )k2 +2 )( D(

b 12 12 12 12 12 12
04 jI,, .c11

12 12 12

"' Q Q

Ae (k1 k + (l
12 A (k 1 1 k 12 2 11 1' 11 - 12 ) 2 (k 11 12 2 11 12 1

I--.1

.. 1 2 .12
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Tabl e 2.4

* .Interaction Between 1 0th-Mode and 1 1st-Mode Primary Waves

mode primary wave secondary wave resonance growth

ampl itu de ph as e ampl itu de ph as.' rate

Uth a01  0 bo 1  all no

1st al1  oil bil "'01 111 possible gl

b1  poss ibl e 2

b 13  91n o

011

-2-2 2 2

01 k I

Q 11

................................................ U' ii=
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CHAPTER 3

THE FORWARD PROBLEM: RELATING OBSERVATIONS TO WAVE PARAMETERS

While the baroclinic planetary waves produce significant changes

in both the horizontal-current and vertical-displacement fields

(i.e., temperature field), the barotropic planetary waves produce

only significant changes in the horizontal-current field and very

little vertical displacements. Thus, the baroclinic waves are

*ooservable through temperature measurements alone but the

observations of both types of waves must be accompl ished with

-..-. combined measurements of current and temperature.

In our investigation of the existence and dynamics of planetary

waves, we used the different types of temperature measurements

obtained in the 1981 Ocean Acoustic Tomography Experiment. Data

were provided by The Ocean Tomography Group. Al though current

measurements were also available, they were not used in the study.

The current measurements lack spatial resolution since current

meters were mounted on two enviromental moorings only (but we have

used the temperature records from those moorings). Thus, we are

limited to the detection of the baroclinic waves only. Three types

of temperature measurements were made. They are the in-situ

profiles, the point measurements, and the integral measurements

(i .e., the acoustic travel times), obtained from the CTD surveys,

the moored temperature recorders and sensors, and the acoustic

tomograpnic array, respectively.

. . -;.;__
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In order to extract information on the barocl inic waves from the

temperature measurements, the forward problem of how the temperature

field and its measurements are affected by the evolution of the

waves must first be resolved. This is done in this chapter in

conjunction with the last one (Ch. 2). In the last chapter, we

stuaied the theory of planetary waves by reviewing the literature.

We saw that the space and time behavior of the wave-induced

perturDations of sound speed (or equivalently of temperature) are

constrained by the modal dispersion relationships and characterized

by the wave parameters such as the wavenumbers, wave amplitudes,

modal amplitudes of the mean flow, etc. In this chapter, the

oojective is to develop the model equations that relate the data to

the unknown parameters that characterize the wave-induced

perturbations and mean-flow induced variations of sound speed. In

Cn. 5, the model equations are inverted for the wave parameters. Of

course, one can use either the perturbations of sound speed or

temperature as the observed dynamical variable in the model

equations, for the two variables are intimately related and

empirically proportional to each other (Wilson, 1960 and Medwin,

1975). We prefer to use the sound-speed perturbation 6c.

We begin in this chapter by giving a brief description of the

1981 Ocean Tomography Experiment. For a detailed description of the

experiment, the reader is referred to the Ocean Tomography Group

(1982). Next, the empirical relation between temperature and 6c and

- the integral relation between perturbation of acoustic travel time

.dx1.

**TV '.* T-,, * '- -F."• " * ' "'" iq - - ,3 " . . . " """ " - " . •" - • "" . . .'. * -• " ° " " w
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and 6c are discussed. We also discuss the data set actually being

used in the model equations for the parameter estimations. The data

set was obtained by f il tering (daily averaging) the point and

integral measurements and compressing the profile measurements.

Finally, we present three plausible dynamical models for wave

propagation and develop the model equations. The space and time

behavior of the wave-induced 6C is constrained and characterized

differently in the different models. By fitting the different

wave-propagation models to the data set, the wave dynamics are then

estimated in Ch. 5.

k, ."
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3.1 The Experiment

In the spring of 1981, the Ocean Tomography Group conducted the

first field test of a full tomographic system in a 300 km square

south-west of Bermuda over a period of 4 months (Ocean Tomography

Group, 1982). The goal was to test the practicality of the

acoustic inverse scheme of Munk and Wunsch (1979) for monitoring the

ocean interior at mesoscale resolution. In order to evaluate the

performance of the tomographic system, the region was also measured

by traditional techniques during the same period so that a basis for

comparison could be provided. The tomographic data was inverted by

Cornuelle (1983) and Cornuelle et al. (1985) on a daily basis; the

daily tomographic maps he generated compare favorably with the

snip-based objective maps. This work demonstrated the great

potential of acoustic tomography for adequate and effective large

scale monitoring. Here, our chief goal is to investigate the

existence and dynamics of planetary waves, and in order to make the

best estimates of the wave parameters and wave dynamics, we

incorporate all types of temperature measurements in our inversions.

The experimental square was centered at 260 N, 700 w over the

Hatterds abyssal plain and just south of the region in which MODE

was conducted. The ocean bottom here has a nominal depth of 5400 m

and a very small depth variation of 300 m over the square. The

tomographic system itself consisted of a horizontal array of 4

sources and 5 receivers moored at a nominal depth of 2000 m

F-, -. ' u-.. . .
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surrounding the square. All the acoustic sources (Si; i=1,2,3,4)

were moored at the western boundary, 4 of the receivers (Ri;

i=1,2,3,4) were moored at the eastern boundary and the remaining

receiver (R5) was moored near the northern boundary of the square.

Using the signal processing technique of Spindel (1979), a 224 Hz

carrier modulated by a repetition of a maximal length shift register

sequence that lasted nearly 3 minutes was transmitted hourly on

every tnird day between each of the source-receiver pairs, and

through a form of matched fil tering, the mul tipath travel times of

the sequence were estimated. Al though the transmissions were

intended to last for 4 months, more than hal f of the receivers had

stopped recoraing data after 80 days into the experiment due to

failure of the batteries. The motions of the acoustic moorings were

tracked by bottom-mounted acoustic transponders. The tracking was

needed to prevent the misinterpretation of the large changes in

travel times due to mooring motion as changes due to oceanic

perturbations. However, some of the tracking data were missing and

hence mooring motions must also be dealt with in the model

equations; that is in addition to 6c, the uncertainty of the the

positions of the sources and receivers must also be modelled.

'.. (Cornuelle, 1983 contains a detailed discussion of how to model the

mooring motions.)

The horizontal geometry of the tomographic array is shown in

Fig. 3.1. Besides the 9 acoustic moorings, 2 environmental

moorings, denoted by El and E2 in Fig 3.1 , were also deployed.

*.
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%Current meters were mounted on the environmental moorings but not on

the acoustic moorings. A total of 32 temperature-pressure recorders

and temperature sensors were distributed on the moorings and mounted

at different depths. However, most of them were not useful for our

purpose because they were mounted either in shallow (above 300 m) or

deep (below 1600 m) water, where information on the lowest

barocl inic-mode planetary waves is hardly obtainable. While the

temperature field in the upper layers cannot be described by the

lower modes alone and contains strong higher-mode perturbations, the

data obtained in the deep zone contain little wave signal (i .e.

shows very little variation).

Three CTD surveys in March, May and July and 2 AXBT surveys in

April and June were conducted. Each CTD survey lasted 2.5 weeks and

had o! casts distributed evenly over most of the square, but denser

in the middle. Each AXBT survey had drops distributed at the same

locdtions as the CTD stations, but such drops are limited to

surveying the upper layer of the ocean only, and thus are not useful

for our purpose.
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3.2 Observations of sound speed perturbations.

3. .1 Profile and Point Measurements

-~ The speed of sound in water, c, is given by the square root of

the ratio of the adiabatic compressibility and density (a derivation

of the relation can be found in Clay and Medwin, 1977). As the

adiabatic compressibility and density depend on temperature T,

salinity S and pressure p (or depth -z) so does c. Empirical

formulae for the determination of c from T, S and p or z have been

generated by oceanographic acousticians using regression techniques

and polynomial least square fittings of laboratory velocimeter

measurements of sea water sound speed over large ranges of S, T and

p. Some of the well-known and highly accurate formulae are those of

Wilson (1960), Medmin (1975) and Lovett (1978); they give almost

identical results for the sound speed.

The empirical formulae make it possible to relate CTD surveys to

the observations of ac profiles. We prefer the formula of Medwin

(1975) for its simplicity; it is given by

c = 1449.2+4.6T-O.O55T
2 +O.OOO29T 3

* +( 1.34-0.O1OT) (S-35) -0.016z, (3.1)

where the physical dimensions of c, T, S and z in the equation are

"Ws,°C, parts per thousand and m, respectively. CTD casts can be

converted to sond-speed profiles by (3.1), and a mean profile c(z)

. ..
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can be estimated by averaging all the profiles. Thus, for each CTD

cast, a profile measurement of sound-speed perturbation can simply

be obtained by

6c(z) = c(z) -c(z). (3.2)

A mean temperature profile T(z) can be estimated by averaging

* all tfe surveyed temperature profiles. By varying c with respect to

T in (3.1) and neglecting the salinsity effects, we obtain the

empirical relation between 6c and temperature perturbation 6T=T-T,

that is

* 6c = 4.66T-O.11T6T+O. O0087T2 6 T. (3.3)

Using (3.3), time series of the sound-speed perturbation can be

obtained from moored time records of temperature.

We have converted all the CTD profiles and temperature time

records measured in the experiment to profiles and time series of

6c, using (3.1), (3.2) and (3.3), respectively.

,- -.'

-. . . . . . . . ..
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3.2.Z Integral Measurements

The description of the acoustic field in a moving medium by an

approximate solution using geometrical optics is valid when the

changes in pressure, density and entropy of the medium are small

over the wavelengths of the sound being transmitted (Blokhintsev,

1956). Such a description is known as ray acoustics and is

appropriate for the case of underwater sound transmissions in deep

water at relatively high acoustic frequencies, of order 200 Hz and

higher. (A frequency of 224 Hz was used in the tomographic

system.) The ray solution, that is the geometrical optics

approximation, for the acoustic pressure at a frequency wa can be

cast as

elu a[ C'(x) t

Pal(Xt) = A(x)et], (3.4)

2 where c* is an arbitrary constant reference sound speed, and A is

the amplitude and wac*Q is the phase of the time-independent

component of Pa. Blockhintsev (1956) has presented a detailed

derivation of the differential equations that govern A and o. The

equation for o is commonly known as the eikonal equation, relating o

to the perturbed sound-speed field Z+6c and the flow field v during

,*.. a transmission by

.= (c*-v VO) 2 /(F+6c) . (3.5)

J ... ,.
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In general, 6c and v vary in both space and time, but they are

considered as time invariant in the derivation of (3.5), because

,* ._ they vary on a time scale which is usually much longer than the

duration of a transmission so that the ocean can be assumed to be

"frozen" momentarily. We will not concern ourselves with the

equation for A, which is known as the transport equation, because A

is not directly related to the travel-time data. However, it is

worth mentioning that the solution for A is important for the

identification of maltipath arrivals. The interested reader should

consult Spiesberger et al. (1980) for ray identifications.

Ugincius (1970) solved the eikonal equation using the method of

-. characteristics and, by proving that the direction of the

characteristics and acoustic ray paths coincide, he then obtained

the equation for the ray paths from the equation of the

characteristics. In a slowly moving and almost stratified medium

with Iv/c 2 , I(dc/dx)/(dc/dz)I and j(dc/dy)/(dc/dz)l being much

smaller than unity, the ray equation can be approximated by

d c* d (x+6x) c*v 0, (3.6)

S+6c (C+6c)

where s is the arc length along a ray path, x=x(s) is the nominal

trajectory of the ray path in the unperturbed and motionless state

and 6x=6x(s) is the deviation from x(s) due to the existence of 6c

di o2and v. For the case of mesoscale eddies, vc is of order ;

, ........ . . .. ..- , . .. . : .- : . . , , " . . , . . , . . , , ; : . . ., . . , .- .. . ., ., . . .. ,
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.. 0
10-  and the ratio of the horizontal to the vertical sound-speed

5gradients is of order 10- thus the ratios are indeed much

smaller than unity. The approximate equation (3.6) has the solution

of planar rays, that is rays that start out in a vertical plane will

always remain in that plane. Munk (1980) considered the effect of

horizontal mesoscale sound-speed gradients on horizontal ray

bending, but found that the bending is negligible, with the maximum

deflection angle being smaller than the horizontal fractional change

in the sound speed. By definition, a ray path is a direction of

transport of acoustic energy, and the direction is the same as the

normal to the wavefront (i.e.Vo) only when the medium is

motionless. With fixed locations of acoustic source and receiver,

(3.6) is an eigenvalue problem. This implies that depending on the

sound-speed profile, sound energy may propagate in more than one

discrete direction before reaching the receiver, that is there may

be many ray paths that connect a source-receiver pair. Multipath

propagation is indeed a prominent feature in the mid-ocean sound

channel and the feature is fully exploited by acoustic tomography in

attaining vertical resolution in the estimation of the perturbed

sound-speed field.

It is indicated in (3.1) that as temperature or pressure

increases, so does sound speed. A consequence of the competition

between decreasing temperature and increasing pressure with depth,

typical at mid latitudes, is the formation of a sound-speed minimum

at a depth of about I km. This can be seen in Fig. 3.2a in which an

I2~

. . . .
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average sound-speed profile in the tomographic region is plotted.

The souna-speed minimum (or "axis") of the sound channel traps some

souna energy within it. For sound waves that progress forward in

* either an upward or downward direction, the increase of sound speed

tends to refract them back to the axis. The trapped energy

propagates along numerous refracted ray paths that sample different

vertical sections of the water column and collects information about

the perturbed sound-speed field through the accumulated travel-time

A. changes. (Fig. 3.2b shows the geometry of some of the eigen-rays

that connected the source S4 and the receiver R3.) In a pulse

transmission, the trapped energy in the form of multipath arrivals

can be detected over a long distance by a receiver being placed near

or at the axis. Thus once the multipath arrivals of each of the

source-receiver transmissions in a tomographic array are identified

and resolved, they can be used alone or together with other

measurements to estimate the perturbed sound-speed field.

For a resolved ray path that connects a source-receiver pair,

the time required for a signal to reach the receiver from the source

is given by

ti+6t + 6+  + d(x+6x) -1

tt =c v.d- ))lds, (3.7)

X6 X

where the quantity in the bracket is often referred as the ray

speed, t is the travel time in the unperturbed and motionless state

;" ""-*. *il
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and at is its deviation due to 6c and v. It is seen that in general

travel times are perturbed in a very complicated manner. Both the

sound-speed perturbations and the currents can affect travel times

directly and they can also affect travel times indirectly by

changing the trajectories of the ray paths.

The evaluation of at can be simplified. Hamilton et al. (1980)

have shown that for any stable ray, that is any ray which exists in

the mean state and does not disappear or alter drastically its

geometry in the perturbed state, and for weak horizontal variations

in c and v, the contribution of 6x to dt is of higher order than

that contributed explicitly by the changes in the ray speed.

Therefore, they concluded that the perturbed travel times may be

*evaluated along the unperturbed ray paths without losing much

accuracy. Furthermore, for most oceanic fluctuations d6ci>>v and

hence v may be neglected together with 6x. By further neglecting

terms of order (6c/c)2  at may be approximated by

at 6C ds. (3.8)

c
x

In (3.8), dt represents an integral measurement of 6c. Because of

the averaging process, oceanic fluctuations of smaller scales are

automatically filtered from at. This is one of the many advantages

of acoustic techniques over traditional techniques of spot

measurements.

"w ', 'I
,3 4
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Although Mercer and Booker (1983) have found conflicting

evidence for the validity of the assumption of travel-time linearity

(3.8) for the case of a warm eddy at temperature changes greater

than 1C, the validity of (3.8) for the case of planetary waves and

ranges of 300 km were confirmed by us through a computer

simulation. Planetary waves that correspond to sc of order 5 mis

and v of order 5 cnis in the upper ocean were simulated; these

values are typical of the open ocean. Perturbed and unperturbed ray

pdths over a distance of 300 km that connects a source point and a

receiving point on the channel axis were computed by solving (3.6)

numerically with a fourth-order range-dependent ray-tracing

technique, developed by the author using the Runge-Kutta method

(Acton, 1970) and thus obtaining high numerical accuracy at long

range. The travel-time perturbations were then computed numerically

from both (3.7) and (3.8), and comparisons made. Results of the

simulated study are summarized as follow:

(1) Travel-time perturbations of order 30 ms are found.

(2) Ray paths are practically unperturbed. The vertical and

horizontal changes of their geometries are of orders 50 m and 1/2

km, respectively. These changes are small comparing to the scales

of the mesoscale perturbations. Furthermore, negligible errors of

order 3 ms are introduced in 6t when the unperturbed ray paths are

used.

(3) Current effects are negligible. Travel-time perturbations

createa by the flow field are found to be of order 2 ms.

*4

. , . .
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Al though the total error created by the assumption of stationary

ray patns and the neglect of current effects can be more than 10

percent of the signal, the estimate of a few unknown parameters is

generally unaffected by the error when a large number of travel-time

data are available.

~~.r
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• .3.3 Data Used

* It is well-known that at lower mid-latitudes the mixed upper

*.,. layer of the water is well separated from the rest of the ocean by a

sharp seasonal thermocl ine located at a depth of about 200 m

(Pickard and Emery, 1982). This large and sudden change in the

density profile, that is the seasonal thermocline, may be viewed in

Fig. (3.3) in which we show an average profile of the buoyancy

frequency N(z) in the tomographic region (N2 is proportional to

the aensity gradient). Physically, the seasonal thermocline

.. inhibits significant exchange of energy between the mixed layer and

the lower ocean that includes the main thermocl ine zone

(approximately from a depth of 300 m to a depth of 1500 m) and the

deep zone (below 1500 m depth), so although the upper layer is

strongly forced by the atmospheric disturbances, the lower ocean can

be left unforced. Thus, an idealized unforced ocean model may be

used to describe the dynamics of planetary waves in the entire ocean

column except the upper layer.

For these reasons and because the potential energy of the waves

is well contained in the main thermocline zone, we did not use time

records of temperature and travel time that contain information on

the forced fluctuations in the upper layer or the unenergetic

signals frori the deep zone. That is, the time series records of 6c

that were obseved in the upper layer or the deep zone and the

resolved ray paths that cycled into the upper layer were not used.

,:,.,,,,,,-,, .. .-. .'-" .".. .. . . . .... ... - , . . . . ..-.-.. -. -.-. - .... ... .. . . . ..4
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(Note that the moored temperature records have been converted to 6c

time series.) Consequently, we have eliminated all but 7 of the 6C

time series and 58 of the 6t time series in the estimations. We

have also checked the deep 6c time series (below 1600 in): they have

very little variance, whiich is consistent with the theory.

Some statistical information about the mesoscale variability in

the general area of the tomographic region was available from

previous experiments, in particular, from MODE. Such information

concerning time scales and vertical structures can be very helpful

in the data processing (such as filtering) needed for reducing the

noise level in the data and the size of the data set. Onice noise

anao ata are adequately reduced, more accurate and efficient

estimates can be obtained. Note that statistical information can

- - also be used to provide additional constraints on the solution of

the inverse problem; the accuracy of the estimate is generally

improved by their application (see Ch. 4 for discussions).

Daily averaging corresponding to low-pass filtering was

performed on the 6c and At time series so that the noise produced by

* 'uninteresting" events such as tides and internal waves is reduced.

* Furthermore, data points on every third day and on every ninth day

in the filtered time series Of 6c and At respectively were retained

for the estimates. We have not lost any useful information by this

reduction of the data because the time scale of the mesoscale motion

in the area is known to be of order of 100 days (Richman et al.

1977).
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McWilliams and Flierl (1975) have shown that over 90 percent of

tre kinetic energy in MODE was contained in two empirical orthogonal

vertical modes that closely resemble the barotropic and the first

baroclinic modes of Rossby waves. Furthermore, Richman et al.

(1977) have shown that about 90 percent of the potential energy,

again in MODE, was contained in the first three barocl inic modes,

with 65 percent of the energy being contained in the first Mode

alone. Thus, it is evident that the vertical structure in the

region is predominantly composed of only a few of the lower modes.

In Fig. 3.4, we show the first three baroclinic modes of currents

(fi(z); i=1,2,3), evaluated numerically from (2.24) using N(z)

shown in Fig. 3.3 and normalized according to (2.35); the

oarotropic-current mode is constant through out the water column and

is not shown in the figure. The three corresponding

vertical-displacement modes, given by h.(z)=Df2N-2df /dz*1 0 i
where D=5.4 km is the nominal depth and fo=6.38x10- 5 s "I is

the coriolis parameter of the region, but re-normalized to have

maxima of unity, are shown in Fig. 3.5. Because of the dominance of

" .the low modes, the ac profile data can be largely reduced, and the

- . reduction will be discussed next.

The vertical modes of sound-speed perturbation, gi(z)'s, can

be evaluated by (2.34b). But due to the fact that the potential

sound-speed gradient is proportional to cN2 (Flatte et al 1979),

(2.34b) can be recast as

.. . .. . . . . . . . . . . . .
I, : : :,:- .: :, .. - .. :.::.. .... . . .;..*,:, , .,,-.... ,-:.-..,.~*- . - - . -, • . ," , .- .- . .. ,-
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2L gil(z) h (i z )c z )N(z J2  (3.9).,
12

In Fig. (3.6), the gi's with i=1,2,3 are shown. Here, we have

re-normalized the gi's to have maxima of unity. Since the gi's

constitute a complete set of functions, the observed profiles of 6c

can be decomposed as

CTD. d
6C (z) = gi(z); j=1,2,3,..., (3.10)

i=1

where dij represents the weight of gi in the jth profile

6Cc~TD It can be computed easily by using the fact that the

Nni 's (or (cN)'g 's) are orthogonal to each other. We can

interpret dij as the observed modal amplitude of 6c at the

location and time (x y,t)=(xj,yj,tj) of the jth CTD cast. In

general , an exact modal representation of 6cC  requires an

infinite sum in (3.10). However, because of the dominance of the

low modes, the sum can be truncated after a few terms without losing

any valuable information. In fact, quite to the contrary, the

quality of the profile data is improved since the truncation is a

filtering process in which the more oscillatory but unenergetic

higner modes are totally eliminated. An important consequence of

the truncation is that the data of an entire profile can e .

effectively compressed into a few modal amplitudes that contain

...........
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equivalent information. Therefore, the huge set of 6c TD's can

De replaced by a managable set of d. 's for the lower modes in the

parame ter es ti ma ti ons .

In order to determine the number of modal ampl itudes M required

CT!D
to represent each 6ciU we made the following calculations

with M=1,2,3 for each of the casts:

M 2

P Li - 6cT D 
- Z dijg 2 dzl/ 6cjTD dz] x 100 percent

i (3.11)

where P is the percentage of variance in CTD generated by

the first M baroclinic modes alone. To avoid being misled by the

fluctuations in the upper layer, the integrations in (3.11) were

performed from 300 m down. Not unexpectedly, Plj 'S of 50 to 90

percent were found in all the casts. This finding is consistent

with the result of Richman et al. (1977) in MODE. We have also

found that the contributions of the 2nd and 3rd modes to 6c in the

tomographic region are minimal: there being less than a 5 percent

increase in the P2j's and P3j's from the Plj's. As a result

of the above findings, we have retained only the modal amplitudes of

tne first mode, that is a =d1j, for the parameter estimates.

It is an interesting fact that even if higher modes do exist and

contain significant energy, they are quite transparent to the

travel-time measurements. Higher modes are more oscillatory over

the vertical column, so that sound waves accumulate many canceling

. -.. _. .



94

changes in their travel times as they propagate up and down the

ocean along the multipaths before reaching the receiver. To

demonstrate this fact, we simulated three perturbed oceans that have

the same horizontal scale (of order 100 km) in their 6c. The ist,

2nd and 3rd oceans were perturbed solely by the ist, 2nd and 3rd

mowes, respectively. Using the geometry of the 1981 tomographic

array and the same 58 ray paths used in the estimations, we computed

the corresponding 6t's. The rms values of the simulated 6c and

computed 6t's for each ocean are summarized in Table 3.1. It is

seen that even with unrealistically large higher-mode perturbations,

the second mode is already transparent to the travel-time

measurements at an experimental noise level of 5 ms.

h-:
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Table 3.1

A summary of a simulated study of whether higher modes

are transparent to travel-time measurements.

ocean mode rms 6c rms At

no. simulated (m/ S) (ins)

1 1st 2.1 28

2 2nd .71 4.2

3 3rd .52 1.8
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We now summarize the data set used in the parameter estimates in

Table 3.2. The seven time series records of 6c were distributed

only at 3 mooring sites El, E2 and S3, and are thus expected to

mainly contain information on the time behaviour of the perturbed

field. In contrast, since the duration of each CTD survey is

relatively short (2.5 weeks) as compared to the wave period (of

order 100 days), they should mainly contain spatial information.

About three ray paths per source-receiver pair (which cycle almost

the entire depth of the main thermocline zone) were used. The

corresponding time series records of travel time therefore contain

information on both the time and space behaviour of the perturbed

field. Only the data obtained within the period between yeardays 61

and 139 are used since most of the acoustic instruments had failed

after yearday 139 and the experiment started roughly on yearday 61.

Thus, the data set contains information on the mesoscale

perturbations that is continuous in both time and space in the 300

km square over a period of 80 days. The postion 26°N, 70°W and the

time yearday 66 are defined hereafter as the point (xvy,t)-(150

*" km,150 km, 0 s) in the tomographic experimental coordinate system.

". .

'. . i * .1
V - . . . . ..°-. . . . . . . .
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-'.Table 3.2

• Data used in the parameter estimations '

data type notation quantity duration no. of data source L

.4..

(yeardays)

moaal amplitudes a°.  65 66-83 65 1st CTD survey "

moal ampl itudes ao 65 120-137 65 2nd CTD survey '

6c time series 6c9k 7 61-139 7x2 7 temperature sensors

6tiesre A958 61-133 58x9 tomographic array "

6t timTableie(3.2)

Note that is the index for position and k is the index for time.

daatp"oain qatt uain n.o aa suc

- .Ctm eis 6 j 11972 eprtr esr

.4-..
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3.4 The Wave-Induced Sound-Speed Perturbations

Propagating planetary waves can be affected by a number of

factors, such as the presence or absence of a mean flow, a bottom

slope or resonant interactions. Depending on which of those effects

are important, the corresponding perturbed field can display very

different space-time characteristics. Due to the uncertainty on

which of those effects dominate in the real situation, different but

plausible dynamical models that place emphasis on different factors

and are parameterized by different sets of wave parameters must be

tried in the detection process. Thus the detection of planetary

wave involves both parameter estimation and model identification.

For the detection of baroclinic waves in the tomographic region,

we have estimated the wave and mean-flow induced sound-speed

perturbations 6cm(x,t;p) both from our three plausible

wave-propagation models (labeled 0, 1 and 2) and the data set. The

results of the wave-parameter estimation and the goodness of each

model are presented and discussed in Ch. 5. In this section, we

describe the three models, their associated 6cm's and the

corresponding sets of wave parameters p.

The ocean bottom in the area of the experiment is quite flat so

that minimal topographic effects on the wave dynamics should be

expected. Thus, in all three models, the modification of the

B-effect resulting from depth variations is excluded. The forced

waves resulting from nonlinear interaction of the dispervsive waves

".--... A.'.-.-. ..-",-"-,",- '. ', -?- A. *.i . . A. - -- .... . -'-" .-,'.'.' ... . ' . . ;- .-. .. . . .." . - . ,-... . " .. . .



99

are also excluded in all the models. The forced perturbations are

of higner order so that they should be negligible. However, at

resonance, the forced perturbations can grow in time and hence can

become significant, thus the possibility of resonant propagation is

included in Model 2. Only the 1st barocl inic waves are modeled

because little energy in the higher modes are found in the CTD

casts. Furthermore, the waves are assumed to be narrow band so that

locally we can use a discrete-wave representation.

Model 0 represents free propagation of linear Rossby waves over

a flat bottom in the absence of a mean flow. The isopycnal surfaces

are aisplaced by the baroclinic waves so that the corresponding

sound-speea perturbations are given by

6Cm(X,t;k=pW ) = 6Cw(X,t;p W ) (3.12)

with

w
6Cw g1 (z) Aicos(kix+liy-oat+)Yi  (3.13)

wnere W is the number of first baroclinic waves considered and Ai,

(ki1,l), ai and Y, are the amplitude, wavenunber vector,

frequency and phase of the ith wave, respectively. The wave

amplitude A i represents the maximum 6c (which occurs at z=-700m)

,. . ._



:1

100

induced by the ith wave since gl(z) has been re-normalized to have

a maximum of unity that occurs at 700 m depth. The space-time

behavior of 6cw is characterized by the wave parameters p=P and

constrained by the modal dispersion relationship of the waves as

given in (2.49) without a modifications and Doppler shifts,

i.e.,68n=6a n=O. Because a i is constrained by (ki,l i ) in

"- (2.49), ai is not a free parameter, so that scw is completely

determinable and can be parameterized by

p= (Alkl,ll,y 1 ,...,AW,kWlW,YW). (3.14)

The possibility of the existence of a mean flow is added in

Model 1. The structure of the mean current is assumed to consist of

" the barotropic and the first baroclinic modes only. This assumption

is prooably a good one because the two modes are known to contain

the greatest fraction of the kinetic energy in this general area

(McWilliams and Flierl, 1975, and Sanford, 1975). In this model the

isopycnal surfaces are further tilted by the baroclinic mean current

. - (the thermal wind relation). Therefore, the corresponding

sound-speed perturbations are now represented by

6c m=dcw(xt;Pw'u 0'Voul'vl)+dcc(X;ulvlbo)

(3.15)

.. .*. .. . . . . . . . . ..
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with an additional time-independent mean variation

uI  y v x1.cc = g 1 (z) [ bo )+ ( )] (3.16)
T F U

where F is a known constant, b0 is a constant for the shifting of

the zero-reference of 6 c from the origin (xy)=(O,O) to the

correct position, and (uoV O ) and (ul,v I ) are the modal

amplituaes of the barotropic and barocl inic mean currents,

respectively. (Note that the overbars on the mean modal amplitudes

have Deen dropped and F is an adjusting factor resulting from the

different normalizations of fi s and gi 's; F=0.157 in the

tomographic region.) Due to the Doppler effects, the dispersion

relationship of the waves changes from that of Model 0; therefore,

so does the space-time behavior of 6cw. The Doppler shifts sOna

in (2.49) now exist and are constrained by the (ki,li) S,

(U0 ,v 0 )'s and (u1,v )'s as given in (2.48C). Thus, 6 cm is

now parameterized by _(Pw,u 0 ,v 0 uI ,v 1 ,b0 ).

In Model 2, the possibility of the propagation of resonant

secondary waves is further included. The modeling requires the -.

replacement of Ai by Ai+Git in (3.13) where Gi represents

the growth rate of the ith wave. In general, Gi is constrained by

the wavenumber vectors and wave amplitudes of the interacting

primary waves. However, since the barotropic mode is not observable

in our data set while resonant waves can be generated by intermodal
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wave-wave interactions, Gi can only be left as a free parameter in

-.4' the model. The set of parameters are now given by
' )P=( pwl G, , . . .GW, Uo 'vo vUl ,v I 3bo 0 ).

The dynamical assumptions made in each model are summarized in

Table 3.3. In addition to the correct propagation model and its

parameter values, the number of existing waves W is also an

'- - unknown. Therefore, its integer value must also be estimated in the

process of detection. The estimation of W is achieved through

assumption and parameter estimation, followed by model

*-- ioentification, with each presumed value of W being considered as

*.--giving a different sub-model.

.4i

. . . . . . .. . . . . . . . . . . ..
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Table 3.3

The Dynamical Hypothesis Made In Each Wave-Propagation Model

Model no. weak mean flow wave-wave resonant flat

oth mode ist mode interactions propagations bottom

0 X

,:1 X X X

2 x x x x

-"X" denotes the assumption is made.

t.. M.h.+, .
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3.5 The Model Equations

Detection is the extraction of the desired signal from a

background of noise (or other signals) by utilizing estimation

methods. In our case the desired signals are the sound-speed

perturbations 6c induced by the waves and the mean-flow.

*Obviously, not all the perturbations of sound speed are caused

oy the baroclinic waves and mean currents. There are many other

oceanic events such as tides, internal waves, turbulence, etc. that

also perturb the sound speed. These other sound-speed fluctuations,

ierefore, constitute the background noise of our detection problem,

and just l ike the measurement noise, they too contaminate the data

set. But if the signal generated by the planetary waves and mean

flow is dominant in the data, the signal can be detected.

The contamination in the data set caused by the background

sound-speed fluctuations is referred to as the model noise. The

model and measurement noise combine to give the experimental noise

that accounts for all the noise in the model equations for the

moaal-ampl itude data and the 6c time records. For the qth

modal-amplitude datum a - q observed at

(xv,t)=(Xq Vqitq) and the kth datum

6C k=4cl(t=tk) which is the lth 6c time record observed

at (x y,z,t)=(x I a 'zl'tk ), the corresponding model

equations can be expressed simply as

-++ .- .
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'>i0 i 0a "

aq a qp) va  (3.17)

and
oC - mC ~a + vC

6c 6C (3.18)

where

am = C(X qyqz=-700 m,tq) (3.19)

an d

6c 1 amk 6 a ml(XI 'Yl 'Zl 'tl 1 (3.20)...

a an 0 aeteniei

are the signals, and v q and v k are the noise in aq

and 6c k' respectively.

The formulation of the model equations for the 6t time series

requires some special care. Tne content of the 6t data is more

complicated than that of the other data. In addition to the

baroclinic waves and mean current, and the background oceanic

fluctuations and the measurement errors, the relative motions and

the uncertainty in the nominal positions of the acoustic moorings

also contribute to the observed travel-time perturbations. In fact,

the hItter two contributions were dominant. If one were to model

these mooring-position related travel-time perturbations as part of

the experimental noise, the 6t time records would suffer a

vanishingly small ratio of signal to noise. In order to improve the

. o .. _. . . . . . . . . ..°.. , ..
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quality of the 6t data, as suggested by Cornuelle (1983), the

mooring-position related travel-time perturbations must also be

modeled as signals, implying that the uncertainty in the mooring

* positions must also be parameterized in the acoustic model equations.

A set of relative mooring-displacement data was available from

the acoustic navigation systems. The tracking data had already been

used to eliminate some of the signal produced by the mooring motions

in the travel-time data. But, since the set of tracking data is

neither error-free nor complete (a lot of data were missing), the

. untracked or unknown horizontal displacements together with the

* "uncertainty in the horizontal nominal positions of the moorings must

still oe parameterized. Note that the vertical translations of the

acoustic sources and receivers were small (of order 50 m) and

produced very little travel-time perturbations (of order 1 ms),

therefore, they need not be parameterized.

Let us consider the jth ray path connecting the mth source Sm to

the nth receiver Rn. According to Cornuelle (1983), the additional

time required for the acoustic wave front to travel from Sm to Rn

along the path due to a small elongation 6R (let's say of order 1

'.- km) of the horizontal distance separating Sm and Rn can be

expressed, to lowest order, as

RdtR = r.6R, (3.21)
J

wnere r. is tue corresponding ray parameter, i.e., the cosine of
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N

the launching (receiving) angle divided by the sound speed at the

source (receiver); rj is a conserved quantity along the ray. Let

tne unknown horizontal-displacement vectors at time tk and the

time-independent errors on the assumed nominal horizontal-postion

vectors of Sm and Rn be [6Xsm(tk),6Ysm(tk)] and

L6XRn(tk),6YRn(tk)], and (AxSm,AySm) and

(AxRnAyRn), respectively. It then follows that the

corresponding 6t at time t k is given by

6tR(tk )= rj coiSmn LaxRn-A Sm+6 x Rn(tk )-dXSm(tk)]
E'I I +rji sin nXmn [Ay Rn -ay Sm +6y Rn t k )-6y Rn(tk )]

(3.22)

where is the direction of the horizontal line of transmission

from Sm to Rn, measured in degrees (positive anticlockwise) with

respect to the x-axis, i .e., east-axis.

We are now in a position to write down the acoustic model

equations. For the travel-time perturbation 6t? )6t0 (t-t

observed from the jth ray path at time tk, the corresponding

equation can be cast symbolically as

0 mt6tj K = AtkA (p_,AX sm AY Sm,9Ax Rn aRn,6 Xsm P6 asm' I xRn' 6YRn) + Vjk

(3.23)

* where vt represents the total or the experimental noise in t9
jk jk*

C4 J
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The signal AT~' can be i-itten as the sum of two parts such that
1.k

atk 6 tjk + 6tk (3.24)

jk ~jk) jk

signal induced by the waves and mean flow which can be expressed as, using

6tP -6 m (Xt;)ds, (3.25)
-2

fx.(s) c(z)

witn xidenoting the unperturbed trajectory of the jth ray path.

\
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CHAPTER 4

PARAMETER ESTIMATION AND THE GENERAL NONLINEAR PROBLEM

For a typical scientific investigation, parameter estimation (or

inversion) and model discrimination are the two crucial steps in the

process of extracting information from data obtained in

experiments. Of course, a successful investigation also depends

critically on the understanding of the physical situation and the

planning of the experiments. While the physical knowledge enables

us to develop plausible mathematical models, relating the physical

parameters that characterize the physical situation to the

pre-selected types of observations (the forward problem), well

-. designed experiments provide good data which are informative to the

investigation. Readers interested in the design of experiments are

refered to the works of Box et al. (1959, 1963 and 1967).

Estimation theory plays a vital role in making progress in

physical oceanography. The ocean is a very complicated

environment. The forcing, initial conditions, and boundary

conditions are uncertain. The exact description of the fluid motion

by mathematical equations is often very difficult, and even when

where it is possible, the exact solution is often intractable.

Thus, in the theoretical study of an oceanic phenomenon, we must

resort to assumptions and approximations (idealizations) that are

reasonaole for the particular study. Different assumptions and

approximations result in different models, and only after

.- A- A
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experiments are conducted and estimations performed, can we then

compare models for the confirmation, rejection or revision of
hypotheses. Therefore, estimation, which utilizes data observed in

* . experiments, provides a feed back loop in the process of

understanding the ocean.

This chapter considers the general estimation problem- The

technique and results of estimation specific to the observations of

planetary waves in this study are presented in chapter 5. The

corresponding forward problem has been studied in chapters 2 and 3.

In the first part of this chapter, estimation methods developed from

pure stochastic approaches as well as those with few probabilistic

* . considerations are reviewed and discussed. Our goal is to relate

and unify tnese methods by showing that once the same set of

information and assumptions concerning the solution and experimental

noise is consistently and analogously adopted by each individual

roetnod, these methods give the same solution. In showing this, a

* general ized estimation procedure that computes this "optimal"

solution common to all the methods considered is also established.

The implication is that we can stop worrying about these different

methods and just apply the generalized procedure to data, since the

solution is independent of the methods themselves. The generalized

procedure is the minimization of the now familiar function of a

weighted sum of products of residuals from both the experimental and

"a priori" data. The second part of this chapter reviews and

discusses some widely used minimization methods for computing the
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solution. The last part considers the errors in the solutions and

presents some overall measures of goodness of a model based on its

final residuals. Such measures of goodness are needed in comparing

models.
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4.1 The Genera] Estimation Problem

The models for many physical situations can be expressed

symbolically as

y = f(x,p), (4.1)

where y is an observable vector representing the signal produced by

a physical event, x is a controllable vector of design-parameters

defining the experimental conditions for observing y, p is a vector

of physical parameters, where the value of p is not of our choosing

but rather characterizes the physical event, and f is a vector of

functions (model equations) which express one's theory on the

relation among quantities; f is a vector of functionals when p

represents continuous functions in their parametric forms. Let us

define the dimensions of y, f, x and p to be mxl, mxl, rxl and nxl,

respectively. Note that all the vectors are column vectors.

The study of a forward problem, typically, consists of

identifying a relevant set of physical parameters and deriving an

appropiate set of model equations. The idea is to be able to model

the signal for a given situation described by x and p, by

incorporating all the essential features of the true process into f.

The corresponding inverse problem is the estimation of p, based

on data obtained in an experiment of controlled x. The model

equations f are considered to be known from the study of the forward

-o. ,o - . .
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problem. In the presence of additive random noise in the

observations, which is always the case in practice, the experiment

can be modeled stochastically as

y*= f(x,p) + v. (4.2)

The data or observations, denoted as y*, contain the signal, but

unfortunately, are contaminated by noise v, and y* and v are both

(m-dimensional) vector random variables. The experimental noise v

includes both the measurement noise and model error. Because the

data is imperfect, only approximate solutions or estimates are

obtainable. An estimation or inversion procedure acting on the data

to give an estimate is called an estimator. In general, different

estimates may or may not be computed from different estimators,

given the same data set. However, the "optimal" or the "best"

estimate p*, that is the unique solution for p, is evaluated from

the optimal estimator which is established according to one's

criteria for the optimal estimate. Consequently, the quality of

besides depending on the quality of the observations and the model,

depends on the estimator that is employed.

. . .

S. . .

i i ' . - -- --" . '.' =' -,' .- "- -" " -' - .. . -. ' . . . . . . .
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4.2 Establishing Stochastic Estimators

-. Due to the randomness in y*, although p itself may or may not

be a vector random variable (a random p corresponds to a random

process), the estimates are always random in nature: For a given

estimator, different realizations of y*, or equivalently, of v,

would result in different estimates. In fact, the statistical

properties of the estimates depend on the estimator used and the

statistical properties of v.

Before establishing the estimator for computing the optimal

* . estimate p*, one must do the following: (1) Select a desired set of

" .statistical criteria for the optimal estimate, (2) collect all the

available statistical information concerning the noise v, and (3)

collect all the prior information concerning the physical parameters

P.

4.2.1 Criteria For The Optimal Estimate

A reasonable estimator should produce estimates which, on the

average, are close to the true value of p. There are two types of

error associated with p*: the bias and the random errors, and small

- bias and small variance are generally highly desirable. (Bias is

* i  the difference between the expected value of the estimate and the

true solution.)

In most cases, unbiased estimators are hard to obtain, and even

- - -- - .* o . ", -
° .

. . - - , .. ., L "-' . .. .. .* -.- . -* .. ° -- . - - .. .- ,. .
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if obtainable, the corresponding estimates are usually unstable to

noise, meaning that small errors in the data can be translated into

large errors in the estimate. In fact, a small bias must often be

introduced, intentionally, for uniqueness and for reducing the

variance of the solution of an ill-conditioned system (Rust and

Burrus, 1972) (here "system" means system of equations as expressed

in equation (4.2)). Thus, total lack of bias is neither essential

nor often desirable, because unbiased estimates are not error-free

ana are sometimes unstable.

The theoretically attainable lower bound of variance is given by

the Rao-Cramer theorem (see Bard, 1974, for the derivation).

However, practically, the estimator associated with this minimum

variance bound (MVB) can only be established for a few simple

systems such as linear systems. The MVB estimators in the case of

linear systems can be derived easily by the Gauss-Markov theorem

(Liebelt, 1967). In many engineering applications of estimation

theory, the development of a new estimation method is usually not

necessary or important, because many of the existing and commonly

used estimators can generally provide reasonably accurate estimates,

and in addition, the minimum-variance, unbiased (i.e. the most

ideal) estimator is unattainable in most cases, anyway. In choosing

a common method, we have simply accepted the criteria for the

optimal estimate associated with the method.

. -. .



116

4.2.2 Noise Distribution

Complete statistical knowledge of the vector random variable v,

that is its joint probability distribution function (pdf) is seldom

possessed, and usually only a little information concerning v is

dvailable, for example, its mean (vector) and covariance (matrix).

However, we must somehow assign to v an adequate pdf because most

estimation methods demand it. If only the mean and variance are

known, a rational choice is the (multivariate) Gaussian (or normal)

distribution, for reasons stated in the following paragraphs:

(1) Simplicity: a Gaussian distribution is parameterized by its

mean and variance only, and the assumption of a normal pdf for v

generally leads to the establishment of simple estimation procedures.

(2) Under some mild conditions, if v is generated from a

summation or integration of many random variables, whether normal or

not, v tends to the normal, according to the Central Limit theorem

(a proof of the theorem can be found in Drake, 1967).

(4) We do not want the estimator to be falsely informed by

specifying more statistical information than we actually know. In

information theory, Shannon (1948) has derived a suitable measure of

the information contained in a pdf; this measure is called the

entropy and it is inversely proportional to the amount of

information. Without further information beyond the mean and

variance, the Gaussian distribution maximizes the entropy (the proof
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can be found in Bard, 1974), implying that the amount of extraneous

information is minimized.

Henceforth, v is assumed to be normally distributed with zero

mean and a known nonsingular symmetric covariance matrix Cv. In

many cases, the true Cv may not be exactly known, but this poses

no serious problem in the estimate. In general, a reasonalbe

approximation of C. can suffice, because most estimators are not

sensitive to small variation in Cv. In addition, the parameters

can always be reestimated using a refined C. when the noise

estimate (i.e. the final residuals) generated by the estimator

signifies that the original specification is far from being

correct. Model errors, very often, have nonzero means, and the

assumption that the means are zero will result in the generation of

bias error in the estimate. However, when the model is accurate,

the bias will be small. The generation of bias will be further

discussed in Ch. 6, Sec. 6.4.

4.2.3 Prior Information

Prior information, if available, can often increase the accuracy

of the estimate. In fact, for ill-conditioned systems, the use of

. prior information, which is equivalent to the introduction of bias

-. in the case of linear systems, must be insisted upon (Jackon, 1979,

Rust ano Burrus, 1972; also see the discussion in Ch. 6, Sec. 6.4

t. - I
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for reasons of stability and uniqueness. The information can come

from previous experiments or physical intuition, and it can

generally be summarized in two forms: a priori probability

distributions, and deterministic equality and inequality contraints

fore.

A scientist usually has some idea of the true value of p before

carrying out an experiment. For instance, he may know that the true

p must lie in a region around, say, k-.2o The above information

can often be expressed by inequality contraints. On the other hand,

if one is willing, the same information can be summarized in an a

. priori pdf P(p): The specification of the a priori expectation by

" p0 and the a priori covariance matrix C according to the0-. R
boundary of the region leads naturally to the assignment of an a

priori Gaussian distribution for p, with respect to information

theory. In what follows, we consider only estimation with a priori

probability distribution.
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4.3 Statistical Estimation Methods

Maximum l ikilehood (ML) and the mode of the posterior

distribution (MPD) (when statistical prior information is available)

are representative, common estimation methods. One important reason

for their typicality is that many other common methods give the same

estimate when all the random variables under consideration are

normal. Other reasons are their wide range of utility, simplicity

in applications and that the estimates are generally easy to compute.

The ML estimate (MLE) is the value of p thaL maximizes the

likelihood function obtained by substituting the realization of y*

into P(y*lp), i.e., the pdf of y*, given p. The reasoning is that

the N.E is associated with the physical event which is most likely

to produce the data that we have observed. On the other hand, the

MPD estimate (MPDE), as indicated by its name, is just the value of

p at which the maximum of the a posteriori distribution

P(ply*) occurs; P(ply*) is the pdf which we must assign to p after

the experiment was conducted, that is the pdf of p, given y*•

Clearly, the MPD method is simply an extension of the idea of

maximum likelihood to accommodate the use of prior information.

Botn the MLE and MPDE are asymptotically unbiased (or consistent)

and asymptotically efficient (Fisher, 1950), that is the estimates

become unbiased and reach the MVB when the number of observations

increases to infinity, therefore, we would expect the estimates to

.- - - - - - - - --. .
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have small Diases and small variances when the set of data is much

*larger than the set of parameters. Futhermore, the estimates do not

depend too strongly on the actual shapes of the distribution

functions P(y* p) or P(pjy*), and the tails of the distributions

have no effect at all on the estimates.

T he MPD method belongs to the class of estimation methods which

uses Bayes I theorem. Let us now formulate the MPD estimator. From

Bayes' thleorem, we have that

P(E Y*) =P(Y* P)P(P)/P(Y*). (4.3)

but since

P(y*) = P(y*lp)dp (4.4)

is not a function of p, and together with the assumption of normal

distributions such that

P(yp (270IV de t7 (C )e-/C~~g) CV~ y..~~)

(4.5)

and

P(p) (2r'V 2d 1/2 (C e~i2(p-po,) (p-k) , (4.6)
21T) det (CP.eP
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it follows that the maximum of P(py*) is identical to the minimum

of the function:

s(P) = Sd(P) + Sp(p), (4.7a)

Swnhere

Sd(P) 1/2Ly*-f(x,P)jTC] y*f(x,R)J (4.7b)

and

s (p) = 1/2(p-po)TC-(p- ) (4.7c)
p -

* . The function s(p) is called an objective function, which is a

measure of the "lack of fit" between the data and model for a given

value of p (Bard, 1974). We can interpret sd and s as the

constraints on p provided by the data and prior information,

respectively. Thus, the MPD estimator is the minimization of the

o.jective function of equation (4.7), and the location of the

(least) minimum is the MPDE. It is a general fact that almost any

estimation method can be reduced to the minimization of an objective

function, as will be shown below.

-;'-, A few comments on the minimum point p* of equation (4.7), that

is the MPDE, are listed below:

(1) If prior information is not available so that C 0, _*
--

is identical to the MLE. This can be shown by observing that the

. . , - . , .. . . . . . . . . . . . . . . . . . . . .
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minimum of sd is the maximum of the 1 ikel ihood function of

equation (4.5).

(2) Even when Cp O, p* may be interpreted as the MLE: As

pointed out by Jackson (1979), the a priori information may be

incorporated in the system of equations by treating p2 as the (a

priori) data for p with covariance matrix Cp. In this way, there

are n more equations in the system and p* is where the maximum of

the modified likelihood function occurs, assuming v and p are not

correlated.

(3) If the mooel equations f are linear in p (linear system),

and v and p are uncorrelated, e* is identical to the linear minimum

variance (Gauss-Markov) estimate (Liebelt, 1967).

(4) If the data are not enough to constrain p by themselves,

:; that is the system is underdetermined and/or ill-conditioned such

that more than one least minimum exists when minimizing sd alone,

then additional constraints provided by the prior information

denoted by the term s must be added to impose uniqueness. This
p

is always the case when inverting functions, for p is effectively

infinite dimensional. On the other hand, if the system is

well-conditioned, which may be the case when the data outnumber the

physical parameters, then the addition of s in the objective
p

function will have little effect on p*.

,'..=.
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4.3.1 Incorporation Of Different Data Types

We define an independent data set as a subset of the entire set

of data, produced by the same physical event, but measured with a

different technique, so that the randomness of any one subset is

statistically independent of the other subsets.

Suppose y* is a joint vector of k independent data subsets

acquired in the experiment

.i = fi(Ii p )  yi i=1,2,...,k, (4.8)

where fi' xi and vi are respectively the vectors of model

equations, design parameters and random noise, corresponding to the

observation of y *. Since vi and ij are uncorrelated, the data

constraint sd of the objective function of equation (4.7) for the

optimal estimate decomposes into a sum of sub-constraints such that

sd 1 1/2 _[ifi(xi,Pl)]Tcil[_ifi(xiP)], (4.9)

| :i - ,

where C i is the covariance matrix of v 1 . Ci has two important

functions: (1) to nondimensionalize the ith set of data and

equations so that data sets with different physical units can be

incorporated together, and (2) to control the relative effect of the

ith data set on the estimate upon its reliability.
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4.3.2 Treatment of Erroneous Design Parameters

optimal values of the design parameters x= are preselected

so as to optimize the effectiveness of an experiment that will be

performed. However, the introduction of error in the preselected

N value of x can seldomly be avoided during the deployment. For

instance, a physical oceanographer may want to deploy a mooring at a

preselected location, but the imperfection in navigation renders the

preselected position subject to error. If the signal in data

produced by the error in x is smaller than the noise level, the

error may be of no consequence; otherwise, minimizing the objective

function of equation (4.7) will produce an erroneous result which

can no longer be an optimal estimate of p

This problem can be dealt with by treating the preselected value

of x as the observation of the true value of x, and modifying

thle system of equations (4.2) to

Li 1 [t oJ 7]
(4.10)

where w is the error in In this system, the true value of x

is also treated as a vector variable to be estimated, and there are

additional r unknown parameters and r data points. Suppose we have

an idea of what the bounds on w are, so that we can characterize w
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Dy a normal distribution with a covariance matrix C.. This leads

to the minimization of the following modified objective function:

S(x,p) =l[e.f (X'P) I C ly*..f(xP)Il (xx)TC (xx-)

7 -0 - -P (4.11)

We refer 2 and POas the erroneous design data and the a priori

data, respectively. They result in two constraining functions which

are similar in form to those given by the experimental datay*

.~. I
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4.4 Non-probabilistic Estimation Methods

There are estimation methods developed originally with little or

no consideration of statistics. These methods do not consider

' optimal statistical criteria for the estimate, but instead, the

optimal criteria are selected in a more deterministic manner upon

physical intuition or sometimes in an ad hoc manner. However, these

methods have their analogues in the pure stochastic framework once

adequate probability distributions are attached. For examples, the

primitive method of "weighted least squares" for estimating a

handful of nuners is related to the M4 method, and the recent

'$variational method" of Provost (1983) and the classical "inverse

metnoas" of Backus and Gilbert (1967, 1968 and 1970), Wiggins

(1972), Jackson (1972), Parker (1977) and Wunsch (1978) for

estimating continuous functions are related to the MPD method.

am'

4.4.1 The Variational Method

Provost's variational method translates the problem of

estimating continuous functions to a problem in the calculus of

variations. In the simplest description, the estimation problem

becomes the determination of pE that minimizes a nonnegative

"smoothing" functional of the unknown function represented

parametrically by p, and subject to the data constraint

-- -,.
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Ly*-f(p)]TW[y*-f(p)] = q. (4.12)

In the above, q is an expected (or presumed) positive value of a

measure of the total misfit between data and model prediction, and W

is a positive-definite, diagonal weighting matrix for

nondimensionalizing and scaling data and equations having different

physical units and different order of magnitudes. Scaling factors

dssociated with the degree of reliability on each datum can also be
included in W. Let's assume that the unknown function is a time

signal in this aiscussion. The smoothing functional can be the

integral of the square curvatures or square slopes, or some other

desireo nonnegative measures of smoothness of the time signal, and

it can oe expressed parametrically as TS p with the matrix SP wiht ma S

oeing positive definite. The corresponding objective function(al)

to be minimized is l(p,a) with

l(plq= cq[y*-f( xp)]Tw [y*-flxp) + s E, (4.13)

where a is the Lagrange multiplier to be found.

, . In the variational method, a criterion for the optimal estimate

is the satisfaction of the data constraint, but since there will be

so many solutions satisfying this constraint due to the

underdetermined nature of this system, another criterion must be

brought in to ensure uniqueness, and it is smoothness. Clearly, the
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method chooses among all the solutions of equation (4.12) the

smoothest one to be the optimal estimate, with smoothness defined by

the selected smoothing functional•

With p,=O, the similarity between equations (4.13) and (4.7)

is evident, and in fact, they have the same minimum-point (i.e., the

two methods have identical solution) when S and W are set

proportional to the inverse covariance matrices and

of p and v, respectively. Under such choice of S and W, if

p represents the Fourier ampl itudes of the time signal to be

estimated, then the diagonal elements of S- 1 and W-1 represent

the normalized power spectral density functions of the signal and

noise, respectively. Furthermore, a is analogous to the signal to

noise ratio and the deterministic criterion of smoothness is

analogous to the a priori information of a low-pass signal described

statistically by the spectrum denoted by S

In practice, one does not compute a and p simultaneously through

minimization, but instead, they are often determined by an iterative

technique: A guess value for a is used so that p are the only

variables during minimization, and after the corresponding solution

for p is evaluated, one then computes the corresponding q from

equation (4.12), and if the computed q is acceptablely close to the

expected value, the optimal estimate is successfully found,

otherwise, the procedure is repeated as many times as needed with

different uut progressively better guess values for a. A similar

iterative estimation procedure is also commonly exercised in

. ... . ,-
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stochastic methods because C and C are generally estimates

*themselves, therefore, their values must be adjusted and the

minimization procedure must be repeated if the final residuals do

' not agree with the presumed covariances.

4.4.2 The Inverse Methods

Backus and Gilbert originally developed a general formalism for

solving the linear inverse problem, which was later cast into simple

linear algebra by Wiggins, Jackson, Parker and Wunsch in

applications to geophysical and oceanographic problems. Such

* furmalism is, by now, known simply as "linear inverse methods". The

yeneral linear inverse problem can be cast into the parametric form

y* = Fp + v (4.14)

by replacing f(p) with F p in equation (4.2), where F is a mxn

matrix representation of the linear differential operator associated

with the forward model and p is a parametric representation of the

continuous function to be estimated. Again, since p is effectively

infinite dimensional while the number of observations is limited,

the system is underdetermined, i.e., n>>m. The system is generally

ill-conditioned as well , so that there are infinite number of

unstable solutions (i.e. solutions with large error variance) that

satisfy equation (4.14) identically with v set to zero. One thus
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faces the problem of nonuniqueness compounded with instability.

Before going any further, let us first transform equation (4.14)

to

y =F'p' + v, (4.15)

where y'=w1 /2y* , P'=S1/2P, v'=Wl/2 v, and F'=W /2F S- 1/2.

The scaling by W1/ 2 is necessary because some obsevations may be

less reliable. The scaling by SI/2 is also necessary, because

without this scaling, the large weighting coefficients in F would

tend to put large amplitudes to the associated parameters in an

unaerdetermined system. Both S and W are symmetric positive

definite matrices. Formally, the solution p' of (4.15) can be

expressed as a weighted sum of normalized orthogonal vectors v-

belonging to a complete set such that

n
aj vj. (4.16)

j =1

The a-'s are the unknown coefficients which we hope to determineJ

from the data and from some criteria in the inverse problem.

Choosing the right set of vj's is crucial to the success of the

inversion.

To deal with nonuniqueness and instability, linear inverse

methods proceed with a spectral decomposition of F', that is the

.-. ". ..--
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,* singular value decomposition (SYD) of F' (Lanczos, 1961). The SVD

gives

F' = U A VT , (4.17)

where A is an mxm diagonal matrix with nonnegative elements, and U

and V are mxm and nxm matrices, respectively. The ith diagonal

element (at the jth row and jth column) of A is the jth singular

value x or the square root of the jth eigenvalue x2 ofJ
either one the following eigenvalue-eigenvector problems:

AF 2. j=1,2,...,m, (4.18a)uj A w .. '.

or

I ' TF'yj :Xjv.; j=1,2,...,n, (4.18b)

with Xi>Xj+ I by convention. The solution for the eigenvectors

"j of equation (4.18b) is the choice of the set of basis vectors

for p' in equation (4.16). The jth columns of U and V are the

eigenvectors uj and vj, respectively. Notice that xj=O for
jJ

j >m, and the corresponding null-space eigenvectors v.'s with j>m,
-j

even though are constructible, they are not included in V in the

* decomposition of F'. It is because they are not resolvable or

constrained by the data: Any combination of the null-space

eigenvectors is a solution to the homogeneous equation F'p'=O, and

they are the reason for nonuniqueness. At this stage, a good

-* lt i:iWW hm,'m * m- , .m -l *Ir . * .
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strategy is to ignore the null-space completely and accept the

unique particular solution p' as the approimate solution for

p' . By sustituting (4.16) and (4.17) into (4.15) with v' set to

zero, and using the equalities (U A V TV.=X u and
-j J J

(U A VT)Tu_=xjv- and the orthonormality of the

eigenvectors, we obtain aj=j (uj= y), and hence,

m

• -I -I

j=1

When there are less than m independent equations in the system, the

number of nonzero singular values (the rank of the system) is

actually less than m, and this corresponds to a larger null-space.

Unfrtuatey, p'is not a stable solution. As can be seen

in equation (4.19), the effect of the noise in y' is magnified by

the vanishingly small singular values. These appear because of the

ill-conditioning of the system, i e. noise in the model F' and

almost redundant information in the data. The usefullness of the

SVD is now obvious: it provides a meaningful set of basis vectors

for p' , in which the stable and unstable components (vectors) are

well distinguished by the sizes of their singular values. Thus, a

stable approximate solution p*~ can be obtained by discarding or

down-weighting the unstable components. A down-weighting technique

is to modify equation (4.19) to

Li
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m k

-)* = !( j T ) (4.20)

wnere a is analogous to the Lagrange multiplier of the variational

. method, representing the signal to noise ratio, and its value is

progressively adjusted until the residuals are acceptable and the

solution is stable. This is identical to filtering the particular

solution by a low-pass filter because the unstable components are

usually more oscillatory; indeed, a smoothed version of the

particu'ar solution is obtained. This smoothed solution is stable

to noise and it is a good approximation when the true solution is

also smooth.

Replacing p'* with $12e in equation (4.20), where * is the

estimate to the original parameters p and recasting the equation

back into matrix form, one obtains

T -1T
= (F W F+S) (FTW)y* (4.21)

with a set to unity. Note that one can always make a=l by rescal ing

W and S. The stochastic analogue of the inverse methods is

disclosed by realizing that the linear inverse solution shown in

equation (4.21) is actually identical to the MPDE evaluated by

minimizing s(p) of equation (4.7) with p0=0 and f(p)=F p,

providing that the inverse covariance matrix of noise and the

* . . .'
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inverse a priori covariance matrix of p are exactly equal to W and

S, respectively. Since the MPDE has the statistical property of

efficiency (minimum variance) in the case of linear systems, the

linear inverse solution becomes the linear minimum variance estimate

when W, S and a are identical to C- C- and unity,.- P
respectively (Cornuelle, 1983).

It was mentioned earlier that a priori information in the form

of a pdf is required to provide uniqueness and/or stability in the

stochastic methods when the system is underdetermined and/or

ill-conditioned. There are no exceptions in either the variational

or inverse methods except that the prior information comes in an

*equivalent but non-proabilistic form, which is the statement that

the continuous function to be estimated is smooth.

We have shown the equivalence of the MPD, variational and

inverse methods. Therefore, someone interested only in the final

solution and computional efficiency would no doubt formulate the

estimation procedure within the context of optimizing objective

functions. However, many geophysicists prefer the less efficient

but more powerful spectral decomposition technique. Unlike the

objective function approaches, in which the information of

smoothness is incorporated right at the beginning of and during the

optimization process, the spectral decomposition approach does not

use this information until the whole spectrum of solutions is

.. *o
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obtained. From there, the resolution of each parameter and the

distribution of independent information are simultaneously provided

by the spectral decomposition: the jth column of the

solution-resolution matrix V VT indicates how well a delta

function located at the jth column of p_ can be resolved, and the jth

column of the data-resolution matrix U UT describes the

distribution of the ith independent piece of information in the

. data. The drawback with spectral expansion techniques is that they

- . are not appl icable to systems that are not linear or cannot be

linearized.

....
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4,5 Methods for Minimization

In order to focus our attention on the minimization of the

objective function s(p) of equation (4.7), we revise p to include

both physical parameters and design parameters, and to include

both experimental data and erroneous design data, when necessary.

We woula like to emphasize that the minimization of s(p) is a

general ized estimation procedure of many estimation methods. Some

widely used numerical techniques of minimization for getting the

optimal estimate are reviewed and discussed in this section.

4.5.1 Linear System

The location of the unique minimum of the objective function

s(p) of (4.7) for the linear system in (4.14) can be evaluated,

analytically, as

E* f -(FT Cvy* + C P), (4.22a)

where

H (F T C 1 1 (4.22b)

is the Hessian (the matrix of second derivatives) of s(p). It can

De evaluated prior to the finding of p* in a linear system because

it is not a function of .2*. The solution p* exists providing that

p,. - . 'o •
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the inverse of H exists. The most complicated step in solving for

p* is, therefore, to invert H. Gaussian elimation and some of its

variations such as the LU and LLT decompositions which are more

convenient for numerical implementations are generally used to

perform the task(Dahlquist and Bjorck, 1969).

On the other hand, the problem can also be solved by using the

more powerful although less efficient SVD as discussed earlier, so

that resolution and information distribution can also be analysed.

In order to use the SYD, the eigenvalue-eigenvector problems of

(4.18a) and (4.18b) must be attacked. This causes loss of

efficiency because finding eigenvalues is a time consuming task.

The numerically stable QR algorithm for finding eigenvalues and the

inverse iterative methods for evaluating eigenvectors are

recommended (Acton, 1970).

4.5.2 Nonlinear System

Numerous methods for minimization have been developed in recent

years, but there is no single scheme that works for all problems. A

method may work well for one type of objective function but fail for

another type. However, most of the methods are iterative in nature,

requiring an external initial guess -1 .or the minimum-point p*,

and then generating an internal sequence of points at p=pi with

i=2,3,..., progressively, which hopefully converges to p*. An

iteration is the process of generating a new point in the sequence.

.-lk

-- 1
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All iterative methods are based on the fundamental reasoning

described Del ow.

At the ith iteration, s(p) near p2i may be evaluated as

s~ -I)=i T R(/)TiROiW(.3

where 6p is a small vector displacement from pi, si=s(pi), and

.i=g(pi) and HiH(pi ) are the gradient vector and Hessian of

s(a) evaluated at p , respectively. Suppose pi is in the

3quadratic region surrounding E*, so that terms of order ie are

negl igiDle and .(pi+6p) can be expressed as

'(pi +!k) =9. + Hi6p. (4.24)

Since 1=0 at p*, the step (vector displacement) that reaches p* is

6.p. = • (4.25)

The Newton-Raphson (N-R) method adopts the above scheme

explicitly, by setting the ith step AP=pi+1-pi exactly equal to

-H. .
1
* The N-R method works well for weakly non-linear

systems, and in fact it works perfectly in a linear system by

requiring only one iteration. Unfortunately, it also fails to work

in many cases due to two major weaknesses. First, the method is

,,' -..-, ... .p-.'..i " .-.. -- ' ; ' ' 'i ' ? . " " 7 - ': " " ' -' -' i " " " " , 'L ' " " -- -" ' ' ,- .I L ' ' , , " i ." ' ' 7 " '
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mathematically unstable, that is it does not guarantee convergence

to a minimum, because an N-R step may not be an acceptable step. An

acceptable step is a "down-hill" step such that s(Pi+1)<s(Pi)"

!- - covergence can only be guaranteed if all the steps are acceptable.

A down-hill step is ensured if it is taken along a down-hill

Sdirection di such that

d = -Gii' (4.26)

whereG i is an arbitrary but positive definite nxn matrix.

Realizing that the ith step direction of the N-R method is the one

1given in equation (4.25) with H-. replacingG , and since H.

can be nonpositive definite when pi is not inside the quadratic

region, stepping up-hill is highly possible along a N-R direction.

The second major weakness is that, at each iteration, the method

S.- requires the evaluations of Hi besides 9i, and in addition, it

also requires the inversion of H The analytical expression of H

as a matrix function of p is quite often very difficult to derive,

hence the evaluations of H at pi's place a heavy burden on the

user. This cannot be too pleasing when approximately n2/2

complicated function evaluations are needed at every iteration, not

* .". to mention the heavy computational burden of inverting large Hi

-*. matrices.

°.. -............................... *
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In view of the defects of the N-R method, stable and more

efficient methods have been sought by many mathematicians. As a

consequence, iterative descent gradient methods (gradient methods

for short) were developed. These methods abate the burdens on both

the user and computer by requiring only the evaluations of '

but not H.'s and H.s. More attractively, gradient methods
-1 -1

are stable in general cases. Hence, the two major weaknesses of the

N-R method disappear in gradient methods.

At each iteration of all the gradient methods, a down-hill

direction is selected at the current point and then an acceptable

step is taken. This is the reason for their stability. The ith

step direction is evaluated by equation (4.26) and d is always a

down-hill direction because the positive definiteness of Giis

ensured by the methods. Different gradient methods choose the step

directions (or Gi's) differently but a similarity of all is that

second-derivative information is estimated and incorporated inG

at each step, which gradually evolves to become the inverse Hessian

at .*so that equation (4.26) also evolves to become equation

(4.25). As a result of this, p* is located. Gradient methods

Lasically fall into two categories: (1) those that require all the

P's to be the minimum-points along d1 's, for example, the

method of Fletcher and Powell (1963), and (2) those that take

acceptaule steps but not necessarily reaching the minimum-pointsI
along di s in all the steps, for example, the Marquardt's method

(1963). The trade-off is that the former method requires more
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function evaluations per iteration but less iterations while the

latter methods require less function evaluations per iteration but

more iterations. However, the total number of function evaluations,

which determines the efficiency of a method, is usually the same

order of magnitude for the two different approaches.

Fletcher and Powell's method (1963) is used in our study. Its

use is solely a matter of preference, and we do not claim that it is

the best method for the investigation since we have not tested other

methods. However, we have found its performance to be more than

satisfactory. Although the method requires, at each iteration, to

step to the minimum-point along the selected direction, it is still

quite efficient because few iterations are needed. It can be shown

that if pi is within the quadratic region of a minimum, the method

tnen only requires at most n more iterations to converge to the

minimum, where n is the number of unknown parameters of s(p). The

method takes very small steps at the beginning of the minimization

process but follows with rapid descent after H )-  has been

closely approximated by Gi.



[ .- .-

142

4.6 Error Of The Estimate

An estimate has no meaning by itself since it should not be

trusted for the interpretation of the true physical situation

without the knowledge of its error. To investigate whether an

estimate is well or ill determined, one can either employ

" nonstatistical response surface techniques (Bard, 1974) or,

" similarly, the statistical analyses of variance (Jenkins and Watts,

19b9, Bard, 1974).

In the response surface technique, we say that there is no

reason to prefer the minimum at p* as the solution over any other

value of p for which
.

-.'.-. s(p)-s(p_) - 1/2 (p-p_*)TH(p*)(p-p*) < €,(4.27)

where c is an arbitrary small constant and is replaced by = when

the system is linear, so that the larger (smaller) the diagonal

elements of H(p*) (H(p*)-I ) are, the better the corresponding

parameters are estimated.

On the other hand, statistically, an approximation of the

logarithm of the posterior distribution can be expressed as

ogLP (p I* )]c -1/2 (p-p_*)TH(*) (-p*). (4.28)

This corresponds to approximating the posterior distribution with a
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normal distribution, and the approximation is good near p* if the

objective function is symmetric at the minimum. The tails of the

distribution are of no concern in the error analyses. Assuming that

is quite close to the expectation, it then follows that an

approximation of the covariance matrix of the error of the estimate

is

C -Hp*'(4.29)

Thus, the diagonal elements of H(_*) are approximately the

variances of the estimates of the parameters.

It was shown that whether considering statistics or not,

H(p)-l is the important measure of error of *.We would like to

mention that a problem in design is to pre-arrange the design

parameters so that the diagonal elements of H(p*) - 1 are minimized

for an expected range of possible values of p*. This design problem

is easier to tackle if the system is linear since in this case H

does not depend on p.

Since H(*) is not a diagonal matrix in general, the errors of

different parameters can be correlated. However, it is of interest

C in many aspects of error analyses, for example, statistical

inference, to look at uncorrelated errors. As a result, a linear

transformati on

* -.-
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p"=QT2* (4.30)

of the original parameters pR is often exercised so as to bring about

uncorrelated errors of the transformed parametars; Q is an nxn

matrix. In other words, uncorrelated errors of linear combinations

of the original parameters are analysed. These orthogonal

combinations can be found by a SVD of H(p*) or H(p*)- . Let us

consider the decomposition of H(*) such that

H()= Q D QT (4.31)

where D is a nxn nonnegative definite diagonal matrix consisting of

the nonnegative singular values. The substitution of equation

(4.26) in equation (4.24) with p"tQ and p"*=Q * gives

~logLPlp" y*) oc-1/2 ( f--p" *)T D(l"-p"*) ,  4.2

where P1"* is the estimate of p". It is seen that D is the

covariance matrix of the error of R"*, and the errors of these

transformed parameters, which are linear combinations of the

original parameters, are not correlated because D is diagonal.

In a nonlinear system, since the posterior distribution may not

be unimodal, many initial guesses are required in the minimization

proceaure inorder to expose the least minimum or to see if all of

them converge to the same p*. If more than one global minimum is

found, the estimation problem is nonunique.

--n-
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4.7 Goodness Of A Model

Even more important than judging the reliabilty of is

judging the reliability of a model. The goodness of a model can be

assessed by analysising its final residuals. A model can never be

proved correct in principle, but it can be proved incorrect or

inconsistent or inferior to other models. Some uniform measures of

goodness based on the final residuals can be evaluated for different

but plausible models, which can then be compared to discriminate

between models and various hypotheses.

If a model is accurate and parameters are well determined, the

residuals will reflect the experimental random noise. In fact,

residuals are oiased estimates of noise: they should be smaller than

the actual random error on the average (Bard, 1974). Some of the

most common tests on residuals in time series are Chi-square

goodness-of-fit, runs and correlation tests (Bendat and Piersol

1971), which are used to confirm a model by verifing noise

statistics such as normality, stationarity and lack of correlation.

However, tnese tests are not applicable when only a few realizations

of the same random variable are made, as is usually the case in

expensive oceanographic experiments, for example CTD surveys.

Fortundtely, in model discrimination, there is less interest in

knowing how well the residuals of the best model resemble the noise

properties than in knowing how well the data are resolved by the

best model as compared to the other models; keeping in mind that

* . . . *. * , .
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some of the noise properties are assumptions anyway.

In what follows, we present some unsophisticated, yet very

useful , measures of goodness of model , which are often sufficient to

serve the purpose of model discrimination.

. The simplest of all measures is the weighted sum of products of

the final residuals, that is

R :c e (4.33)

where R is a Chi-square distributed random variable with m degrees

of freedom, e is the final residual vector, and the adjusting factor

* c is the total number of experimental, a priori, and erroneous

design data divided by the same number less the total number of

-.unknown parameters. If a priori data are available and used in the

oojective function of equation (4.7), then c=m+n+r/(m+n+r)-(n+r)

=m + n+ r/m. If a priori data are not used, then c=m+r/(m+r)-(n+r)

=m+r/m-n, where r is the number of erroneous design data or

parameters. The factor c is needed to adjust the inverse covariance

matrix of noise to equal that of the final residuals due to the bias

(Bara, 1974). A significance level can be selected for rejecting

models on the two edges of the distribution.

In general, the smaller the misfit between the data and the

model , the better the model and the resolution in the solution (or

parameter) space are. However, care must be taken when the misfit

is extremely small, because we may have an unstable system instead

. . ., - .. . . - .. . . .-. .. .
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of a perfect model. Backus and Gilbert (1970) have shown that

traoe-off between resolution and the statistical reliability of the

estimate exists when noise is present. Moreover, for an

ill-conditioned system, the variance of the estimate increases

'-"- without bound as resolution is pushed beyond the limit imposed by

the data. Thus, a model is acceptable if and only if both the

variance and R, which is a measure of misfit and hence of resolution

diso, are acceptable.

To illustrate the trade-off between resolution and reliability,

consiaer the linear system (4.15). An estimate may be constructed

using (4.19), where the basis vectors vj are weighted and then

summed to give the estimate. Since the weighting on _j is the

product of the inverse singular value x' I and the projection of

tne ooservations y' onto the corresponding eigenvector uj in the

data space, the small xj's can translate the experimental noise

into large estimation errors. Clearly then, the reliability of the

estimate can only be improved by degrading the resolution, that is

aiscaraing or down-weighting the v's that have small x.
-J 3

There are two other measures which are often used to judge the

success of a model in predicting (interpolating) data. They are the

correlation coefficient between observed and predicted signal

(TC_ (3- _ y*T* _lf(x*,e*)
" .C =-(4.34)

-, .. (yT~~~v e,)I/ (fT (x* ,e*)C v ~* *) /
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and the amount of signal energy resolved by the prediction

Ii~ !T (* _C-i (X*, e*

L = - x 100 percent. (4.35)
T -

-. The larger C and E are, the better the model fits the data, but

again, these two measurements can be misleading in the case of

instabil ity.

The similarities in shape and amplitude between the observed

signal and the model prediction are measured by C and E,

respectively. In general , C and E are independent, but for a least

squares minimization, 100C equals E for the total set of data

points. however, for individual subsets of data, C and E remain

useful separate pieces of information.
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CHAPTER 5

ESTIMATION OF WAVE PARAMETERS AND WAVE DYNAMICS (1):

METHOD AND RESULTS

5.1 The Estimator

Our parameter-estimation problem can be phrased as the inversion

of the sound-speed perturbations 6c based on the data, and

contrained by the dynamics of narrow-band planetary waves. A

* .consequence of the addition of the dynamical constraint on 6c is the

modification of the system to be inverted from highly

underdetermined to highly overdetermined. For a small number of

waves, the system can be well-conditioned as well. It was the

expectation of a small number of waves and of a well-conditioned

system that led us to use the MLE estimator instead of the MPD

estimator. It was learnt in the estimation process that as the

number of waves W increases, the condition of the system

deteriorated. However, this has no effect on our investigation,

because the optimal wave fit, corresponding to W=3, was unique and

wel 1-determined.

With reference to the discussions in Sec. 4.3, the MLE estimator

can be formulated as the minimization of an objective function (i.e.

likelihood function). Treating the 130 modal-ampl itude data

(a. j=1,...,130), the 7 time series of sound-speed

perturbations (6cjk=6C (t=3k days); k=O,...,26 and

k LI

,°?* . .

. . ."*
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j=1,... ,7) and the 58 time records of travel-time perturbations
0 0

S(6tk=6t (t=9k days); k=O,...,8 and j=1,...,58) as 3i.k.-

indepenuent data subsets (refer to Table 3.2 for the sources of

data), and further treating the uncertainty in the nominal

horizontal positions, ax, and the unknown horizontal displacements

(6X,=6X(t-g9k days); k=O,...,8) of the acoustic moorings as errors

in the design parameters, the objective function can be cast as a

sum of 5 constraining functions of similar forms of weighted sum of

square of residuals. Because there were 9 acoustic moorings, &x and

=6X are 18-dimensional vectors, and we denote their jth components

by axj and 6Xjk, respectively. The objective function can thus

be expressed as

S(P-0 ( -)+

i':-" s (p., ..1x, OI,... , -8 ) = Sa (P-)+ S6c ( d)+s t(_._.,_ . .,_ 8)"
'T~~i" ~+S Ax)~+s 1(X,. ,_8 5.1a) .

with

130

S 112. [a-aj(p)) (5.1b)

j=1

7 26

S 1/2 2 Z6C ? ,M ,- k 2 (5.1c)

j=1 k=O

and
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58 8
, 1/2 ;'j [6tk - -

,' .. s6t = 1 8 Z Oj[tk jkP9X6 ( 5.id )
Ai. A =k ik k

j=1 k=O

representing the constraints imposed by each of the data subsets on

a wave-propagation model (Model 0, 1 or 2) that is characterized by

* .a corresponding set of unknown parameters p as described in Sec.
m m m

3.4, where am, 6k and 6tjk are defined in (3.19),

(3.2) and (3.24), respectively. Furthermore,

18

' sx = 1/2 (5.1e)A, T ' AX , J

4%. j =1

an d

".18 8

s 1/ 2 16x8jk (5.1f)Zx6xj jk
j=1 k=O

represent the constraints imposed by the erroneous design data on

the incorrect horizontal mooring positions. In writing down (5.1b)

to (5.1f), we have assumed uncorrelated experimental noise and

design-parameter errors, with the variances of aj, jk'
jk'~~~ t±jan xk

. , tjk, Ax and Xjkbeing denoted by 0 ,j, 2 c jk~2 2

a2t,jk , a and a2 respectively. If a priori
6tX I6j

information on .were incorporated in the estimator, (5.1a) would

have an additional constraining function, again of a similar

d7.
. ..- .

S . . -.,

• °o **

. . . . . .. . . . . . . . . . . . . . . . . . . . .
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form. The minimum point would then be the MPD estimate and the

variance of the estimate should be reduced.

Although a priori information was not incorporated explicitly in

the estimator, it was utilized in many related occasions. An

implicit usage was in the filtering and reductionof the data (Sec.

3.3). On the other hand, the optimization orminimization of (5.1)

was facilitated by reasonable initial guesses of p that are

consistent with the prior information, for example, the guessed

wavelengths are of order 100 km and the guessed wave amplitudes are

of order meters per second.

4

r" ..
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5.2 Assignment Of Noise Variances

In almost any parameter-estimation problem, the variances of

measurement noise are generally fairly accurately known. On the

other hand, one usually has less idea or no idea at all of what the

variances of the model noise might be, especially when the

estimation problem corresponds to model identification. However,

this inexact knowledge of noise statistics does not in general

introduce any major obstaclq in solving estimation problems. There

are two reasons for this: first, most estimators are not sensitive

to slight variations in noise variances, thus as long as the

assigned variances are within reasonable ranges of the true

variances, the estimate will not be greatly affected. Second, all

estimators also generate an estimate of noise, besides an estimate

of the parameters, so that one can rely on the noise estimates

themselves, that is the final residuals, for refinement of the

* assigned variances in an iterative estimation process when

necessary. The assignment of the noise variances in (5.1) is

described below. The assigned values were later found to be

- -consistent with the final residuals, i.e. the final residuals are

not consistently larger or smaller than the assigned standard

deviations.

By analysing numerous sound-speed profiles acquired by Piips

(1967) between Bermuda and Eleuthera, Mooers (1974) found strong

evidence for the existence of a first baroclinic semidiurnal tide

01 --
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with an amplitude of 0.7 ni/s in 6c at 550 m depth. Furthermore,

nonlinear and higher-mode perturbations are neglected in all 3

wave-propagation models (Table 3.3). These neglected higher-order

perturbations combined with the internal tide are probably the major ."

contributors to model error. While the errors in the

modal-amplitude data are most sensitive to the internal tide due to

the lack of temporal filtering, the errors in the filtered 6c time

records are most sensitive to higher-mode fluctuations. In

addition, the dc time records are also subject to errors caused by

vertical mooring motion. We guess that the a c,jk 's and aa,j  ,

should be roughly I n/s, and thus have set aa,j=a 6c jk=1 m/s for

all j and k.

Considering the measurement noise and internal waves and tides

alone, Cornuelle et al. (1985) have estimated the daily mean

variance of travel-time noise to be 3.6 ns2  In order to include

the errors introduced by the neglected higher-mode perturbations and

current effects, and the assumption of travel-time l inearity in our

,'" models, we have added 52 ms2 to their estimated variance, that

is we have made 2ms We note that some of the'- is e have adt, k 3 .6 +2 5

travel times were missing or not resolvable from the 58 ray paths

used on some particular days, (especially, during the later period,)

and in these cases we set the corresponding variances to infinity.

The available tracking data indicate that the horizontal mooring

displacements were of order 200 m. Therefore, we have set

S6xjk=200 m and 20 m for the untracked and tracked displacements,

, .'. • -. ""' ". -.'- -. -' ''.,''- .''" -' .' - . " .. '- - -. "* -. .- .-

ml'i *.i. . - * i d *~li d i d _ .la~ * . l - L" " * *"" " " "
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respectively. The 20 m standard deviation represents the

measurement error expected from the navigation systems. We have

furthe je 500 m for all j which is a reasonabl e value as

indicated by the observed travel-time perturbations.

L. "
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5.3 Results

The iterative descent gradient method of Fletcher and Powell

(1963) was used for the wave fits, that is the optimization of (5.1)

with aifferent wave-propagation models and numbers of waves. In

each minimization, after accepting an initial guess of the unknown

parameters u=(p,x,_Xo,.. .,6x8 ), the method then proceeds to

locate a minimum by estimating, progressively, the inverse Hessian

* matrix H* 1 (i.e. the inverse of the matrix containing the second

derivatives) of s(u) at the minimum point u* (Sec. 4.5.2). Thus an

estimate of u, u*, and an estimate of the error-covariance matrix of

-1
u., H* , are generated, simultaneously.

For each of the three models, one to five waves were fitted to

N the data. At least four different initial guesses of p for a given

model (Model 0,1 of 2) and nunber of waves (W=1,2,3,4 or 5) were

used in the optimizations to explore the least minimum (i .e. the

solution) and to investigate nonuniqueness. All the initial guesses

of ax and 6 were null vectors. While the wave fits with W<3 are

unique, those with W>3 are not. In each fitting with W<3, most of

the initial guesses converged to the same stationary point where the

least minimum occurs, and although a few initial guesses converged

to different stationary points, the corresponding minima are

considerably larger. For each of the wave fits with W>3, different

initial guesses resulted in different minima of approximately the

same size, hence a unique least minimum could not be identified.

. ,°. . .
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The change from uniqueness to nonuniqueness as W increases is a

demonstration of the trade-off between resolution and stability. As

W increases, so do the magnitudes of the wavenumber estimates.

Thus, finer-scale structures of the perturbations are intended to be

resolved with a larger W, but because of the inadequacy of the data

in resolving them, the system for 6c is rendered underdetermined.

In Cornuelle's (1983) time-independent inversions, no dynamical

constraint is imposed on the solution for 6c, and in order to ensure

uniqueness, he incorporates an a priori covariance of 6c that is

assumed to be horizontally Gaussian with a decay scale of 100 km in

the estimator. This is the same as requiring the solution to be

smooth in space. Cornuelle points out that the solution for 6c is

not sensitive to small variations in the assumed spatial decay

• scale. We have encountered a similar situation in our

time-dependent inversions. An interesting fact is that although the

wave-parameter estimates are nonunique in the cases of W=4 and 5,

the solution for the corresponding 6c is unique. That is, the

estimated fields of 6c, and the amounts of resolved data variance

- associated with the different stationary points are practically the

same. Indeed, the constraints imposed by the wave dynamics are

analogous to the criterion of smoothness, the diferent stationary

points are analogous to the variations of the decay scales in space

and time, and a time-dependent inversion is not sensitive small

variations of uoth decay scales.

w • -
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In order to assess and compare the different wave fits so that A

the optimal model and W may be identified, a simple measure of

goodness, that is the weighted sum of squares of final residuals R,

defined in (4.27), was computed for each of the wave fits. When the

estimate is close to the true value, the probability distribution of

Vfle final residuals is approximately Y -imal (because the noise

distriuution is normal) and the covdriances of the residuals and the

*noise are approximately proportional to each other (Ch. 4, Sec.

4.3). Thus, R is approximately a Chi-square distributed random

variable with m=b4l degrees of freedom where m is the number of

data, and the 0.01 significance level of the random variable is at

S-- R-940. In Fig. 5.1, we plotted R versus W for each model. It is

seen that the performance of Models 1 and 2 is much better than that

of Model 0. While none of the wave fits of Model 0 passes the 0.01

significance test, the fits with W=3,4 and 5 of Model 1 and 2 are at

and oeyond the 0.01 significance level. Althougn Model 1 and 2

perform equally well , the estima d growth rates of the wave

amplitudes in Model 2 do not differ significantly from zero and, in

fact, their signs are anviguous because their rms errors are larger

than the estimated growth rates themselves. The lack of ability to

aetermine the growth rates is not surprising, however, because (1)

resonant interactions should be rare occurences since the forced

waves can grow if and only if they satisfy the dispersion

relationship, and (2) even if resonance actually ocurrs, the time

scale of the growth, in weak-interaction theory, is much longer than
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Figure 5.1. Misfits of the 3 wave-propagation models on the data as

functions of the number of waves fitted. The measure of misfit is

R, which a weighted sum of products of final residuals. The

weigtting factors are the reciprocals of noise variances.
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a wave period and , hence, data measured within a wave period cannot

be adequate for observing such phenomena. The reason for fitting

Model 2 to the data is to see if there are any surprises that are

inconsistent with the theory. For Model 1, the data variance

resolved increases by 20 percent as W changes from 2 to 3 and

increases by as little as 5 percent as W further changes from 3 to 4

or 5. Also, we must keep in mind that W=4 and 5 correspond to

unstable wave fits. Thus, an overall judgement clearly favours

Model I to be the optimal wave-propagation model in which a mean

flow is present and W=3 to be the optimal number of propagating

S- first barocl inic waves.

To make further assessments, we computed for each wave fit the

correlation coefficient Ci between the ith independent data subset

and the fit, and the amount of variance in the ith data subset

resolved by the fit, Ei, using (4.34) and (4.35), where i=1,2 and

3 aenote the data subsets of modal ampl itudes, 6c time records and

6t time records, respectively. For Model I, that is the optimal

model, Ci's and Ei's versus W are plotted in Figs. 5.2a and b,

respectively. At W=3, i.e., the optimum, we obtain Ci s of 0.8,

0.9 and 0.98 and Ei 's of 78, 82 and 96 percent with i=1,2 and 3,

respectively. There is no inconsistency although C3 and E3 are

considerably larger, because a large portion of the variance in the

6t time records is resolved by the determination of the

mooring-position errors alone. The consistently high correlations

and resolutions are a strong evidence of the existence of three

- V"
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Figure 5.2a. Correlations of the travel-time perturbation records
(o), the moored temperature -perturbation records N~ and the
modal-amplitude data from CTD casts ()with the Model-i fit for a
given nuaver of waves.
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Figure 5 .2b. Amounts of signal energy accounted for in the
*travel-time perturbation records (o), in the moored

temperature -per turbati on records N~ and in the modal-ampl itude data
from CTD casts (.)by the Model-i fit for a given number of waves .
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first uaroclinic planetary waves in the tomographic region during

te experimental period. The optimal values of the parameters for

the waves and mean flow, and their standard deviations (square roots

of the diagonal elements of H* -1 ) are shown in Table 5.1. In the

tanle, the phase and group velocities, the Doppler shifts and the

shifted periods themselves, as well as the directions and lengths of

the waves are presented. Although the mean flow is very weak, it

must be taken into consideration, since it speeds up the phase

propagation considerably by generating Doppler effects; it is thus

vital to the success of the wave fit.
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Table 5 .1

The Optimal Estimate Of The Wave Parameters

(a) Independent Wave Parameters; the numbers behind the *signs are
* the standard deviations

*wave i .d. 6c ampilitude wavenunter vector phase constant
i.d. no. Ai (nV's) ki (1/km) li (1/km) yi (rad.)

i
1 1 .10*0.13 -.0118*.0011 .T0233*.0010 2.1307197
2 2.28t0.12 -.0066*.0005 -.O198*.Ooo7 1.51*0.12
3 1 .73.*0.09 -. O119.*.0OO5 -.0030*.=08 -0.o6*0.11

mode no. mean-current modal-ampl itude vector zero-reference 6C
m UO (cnv's) vo (cm's) bo (nV's)

0 -l./0*0.24 0.11*0o.08
1 -0.76t0.13 0. 39t0. 09 ~ 1.46*0. 21

(b) Dependent Wave Parameters

wave wave direction wave Doppler shift
i.d. no. l en gth of phase period period

i (kin) (degree) (days) (days)

1 Z8120 117 -0
2 S00 -108 344 -164
3 509 -164 121 -77

wave phase velocities group velocities
i.d. no. eastward northward eastward northward

i(cm/ S) (cm/ S) (cm/ S) (cm/ S)

1-5.25 3.06 -4.24 0.23
2 -3.19 -1.06 -4.30 1.16
3 -5.04 -17 .69 -4.23 0.53



164

The seven observed time records of 6c are plotted in Fig. 5.3to

5.9 together with the optimal fits. It is seen that the

observations and the optimal interpolations compare favorably.

Furthermore, some secondary perturbation with a period of about 20

days superimposed on the primary perturbations created by the 3

N. linear dispersive waves are found consistently in all the time

records. The secondary oscillations were most profound at the

mooring site E2, i.e., at (xy)=(150.7 ,13.6) km. Because the
frequency is below the inertial frequency, this oscillation cannot

be due to internal waves; we speculate that the secondary

perturbations were caused by the forced waves that oscillate at

frequencies equal to the sum of the frequencies of the interacting

arotropic and/or barocl inic waves.

To demonstrate that the observed pattern of the fairly

complicated system can indeed be reconstructed accurately by the

gradual evolution of three waves, we show a time sequence of the

*. estimated and surveyed sound-speed maps at a depth of 700 m in Fig.

5.10 to 5.16. The average sound-speed at that depth is 1506 nys.

The estimated perturbed sound speed on yearday 66, 83, 102, 120 and

137 are contoured in Fig. 5.10, 5.12, 5.13, 5.14 and 5.16, and the

observed sound speed from the first and second CTD serveys were

contoured in Fig. 5.11 and 5.15, respectively. It is seen that the

waves generated a trough that was moving slowly to the west and then

produced a front that was advancing from the northeast during the

later period.
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Figure 5.3. Comparison of the optimal wave fit ( __)wi th the

sound-speed perturbation time series (4 )observed from the

temperature sensor located at x.(145.7,145.0,-.6265) km.



166

-,,060 00 70 00 80 00 910 00 100 00 110 00 120 00 130 00 144 00

z
0

Q-
0

0

Figue 54. ompriso oftheoptmal avefitwit th

son-pe etraintmesre bevdfo h

teprtr esrlctdatx(4.,4.,.30 m



167

-,-0630 )0 0 0 20 00 100 00 110 00 120 00 130 00 14a 00

!7

,/

40 0 O 0 1,0 ,"0 60
7DT[E E (,¥ ) AT (150 7.135 6.- 44891) KV

0

00

. .. m:,Figure 5.5. Comparison of the optimal wave fit ( )with the

temperature sensor located at x_(150.7, 13.6,-.4489) km.

ww

4 € . ..,,i .1 '-,.l l - .,. d ,t-t, , .,I "-,"" " " .. .. ...



168

Kc0 00 F0 .0 9 0 00 1 00 00 1 10 00 1 20 00 130 00 1 410 3 0

z
0

Of

0U0

IC R r 00 10 00 100 00 1 10 00 1110 00 130 00 4 )0

T TME (LDAY) AT (150 7. 13 6. - 892-0) KV

Figure 5.6. Comparison of the optimal wave fit ( )with the

sound-speed perturbation time series (+ + +) observed from the

* temperature sensor located at x.(150.7. 13.6,-.8920) km.
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Sound-speed perturbation time series ( +)observed from the '

temperature sensor located at x.( 18.9, 91.5,-1.1176) km.
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Figure 5.10. Sound-speed map at a depth of 700 mn of the optimally

estimated wave field in the experimental square on yearday 66.

Contour interval is 1 rn/s and the reference sound-speed at this

depth is 1506 Wis.
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Figure 5.11. Sound-speed at a depth of 700 m 'in the experimental

*square, mapped by the 1st CTD survey. The survey began on yearday

66 and ended on yearday 83. Contour interval is 1 ni/s and the

reference sound-speed at this depth is 1506 W's.4
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Figure 5.12. Sound-speed map at a depth of 700 m of the optimally

estimated wave field in the experimental square on yearday 83.

Contour interval is 1 ni/s and the reference sound-speed at this

depth is 1506 i~s.
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Figure 5.13. Sound-speed map at a depth of 700 m of the optimally

estimated wave field in the experimental square on yearday 102.

Contour interval is 1 ni/s and the reference sound-speed at this

depth is 1506 ni/s.
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Figure 5.14. Sound-speed map at a depth of 700 m of the optimally

estimated wave field in the experimental square on yearday 120.
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Figure 5.15. Sound-speed at a depth of 700 m in the experimental

square, mapped by the 2nd CTD survey. The survey began on yearday

* . 120 and ended on yearday 137. Contour interval is 1 rn/s and the

reference sound-speed at this depth is 1506 nis.
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Figure 5.16. Sound-speed map at a depth of 700 m of the optimally

estimated wave field in the experimental square on yearday 137.

Contour interval is 1 m/s and the reference sound-speed at this

depth is 1506 W~s.
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The covariance matrix H*1I of the wave-parameter estimate

p** (i.e. the corresponding block in the inverse Hessian matrix of

the objective function evaluated at the minimum point) gives

indications on which wave parameters, or linear combinations of wave

.,.- parameters, are well determined, and which are poorly determined. A

" -simple measure of the quality of the estimate is given by the

diagonal elements of H* 1 , which are the variances of the

errors in the estimate; the standard deviations are listed in Table

5.1a. However, the presence of nonzero off-diagonal elements

implies that the errors are correlated, and a full description of

the error structure must take all the elements of the matrix into

account. As discussed in Sec. 4.6, a full description may be

obtained by finding the eigenvalue decomposition of H*1 such
-R

that H*_ =U D UT, where D is the diagonal matrix containing

the eigenvalues and U is the matrix containing the eigenvectors in

its columns, so that new variables defined by p'=uTp and

representing a set of linear combinations of the wave parameters

would have uncorrelated errors in their estimate R*=UTp*. The

error variance of p'* is D. We have performed the decomposition and

found the set of linear combinations of wave parameters. We have

found that all the 17 linear combinations were well determined. The

difference between the variances of the best and the worst

determined linear combinations is small. The 17 linear combinations

will not be listed since they serve no further purpose in this

investi gati on.

• I
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*Finally, it is desirable to obtain an error estimate of the

estimated sound-speed perturbation 6c*=6cm(r ) due to the error

Ap* of the estimated wave parameters p*. Through a linearization of

the wave and mean-flow induced sound-speed pirturbation acm(p)

about p*, the error of 6c* can be approximated by

- T
.Ac*- [ a6cm(- ) ] *. (5.2)

ap

It then follows that the variance of Ac* can be written as

<A6c'2> [a6cm(p*) T H* I[ 6cm(*) (53)•~i R PP Y],(53

where H* is the covariance matrix of A*. In Fig. 5.17, 5.18

and 5.19, we show the contour plots of the standard deviation of 6c*

(i.e. the square root of (5.3)) at a depth of 700 m on yeardays 83,

102 and 120, respectively. Because the densities of the ray paths

7and the CTD stations were much higher in the middle of the area, the

errors are smaller there. Furthermore, since there was an

enviromental mooring E2 on the southern boundary, the errors near

this boundary is smaller than those near the northern boundary where

no enviromental mooring was deployed (see Fig. 3.1). The constraint

imposed by the wave dynamics had introduced a high correlation

. . ... -. 7
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between the sound-speed perturbations at different locations and

times; thus the errors in all the maps stay within a pretty narrow

range.
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Figure 5.17. Error map, showing contours of the standard deviation

at a depth of 700 m of the optimally estimated sound-speed

perturbations in the wave field in the experimental square on

yearday 83. Contour interval is 0.05 m~s.
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CHAPTER 6

ESTIMATION OF WAVE PARAMETERS AND WAVE DYNAMICS (2):

DISCUSSION AND CONCLUSIONS

6.1 Summary Of The Wave Fits

* Using estimation theory and optimization techniques, we have

studied the existence and dynamics of dispersive baroclinic

planetary waves. The estimations were based on the profile, point

and integral measurements of sound-speed (or temperature)

perturbations obtained in the 1981 Ocean Tomography Experiment.

Maximum Likelihood estimators that correspond to least-square

fitting were employed. Many other commonly used estimation or

inversion methods are analogous to the Maximum Likelihood method and

the technique of least-squares, that is the generalized estimation

or inversion procedure is the minimization of an objective function

of a weighted sum of products of residuals as discussed in Ch. 4.

A range of one to five waves that propagate according to three

plausible models were fitted to the data. The properties of the

different wave fits were then compared so that the most consistent

propagation model could be identified and the optimal number of

existing waves could be estimated. The data set used in the

fittings was derived from the measurements through filtering and

data reduction.

. . .--
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The 'best' fit can unambigously be identified to correspond to

three waves that evolved under the presence of a mean flow. The

evidence of the existence of the waves is supported by the high

correlation between the fit and the observed signal (>0.88) and the

large amount of signal energy resolved (>78 percent), in each of the

three independent data subsets. Furthermore, the high correlations

and resolution cannot be a result of ill-conditioning in the system

of model equations because the optimal solution for the wave

parameters is unique and well-determined. As indicated in Table

5.1, the rms errors are only about 10 percent of the estimate.

-el., .*

. . .o.
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6.2 Comments On The Wave Dynamics

Westward phase propagation is known to be typical of mesoscale

perturbations at mid-latitudes from previous experiments.

Consistently, as indicated in Table 5.1, the phases of the observed

waves were all propagating westward. The corresponding

group-velocity vectors have westward directions also, implying that

the waves were generated somewhere to the east of the experimental

' - region, therefore, the possibility that they were radiated by the

intense Gulf Stream can be ruled out. The three baroclinic waves do

not form a resonant triad since the sum or difference of the phases

- - of two of the waves does not equal the phase of the other wave.

However, the propagation of resonant baroclinic waves is still

possible because they could be generated by interacting barotropic

waves. The fastest oscillation that could be forced by the observed

baroclinic waves would result from the interaction between the 1st

. and the 3rd waves and would have a period of (1/117+1/121)-1~60

days. But, since the secondary perturbation which we have observed

S.' from the moored time records of temperature has a period of 20 days

(see Fig. 5.3 to 5.9), it must be due to the interaction of

barotropic waves that have much higher frequency cutoffs.

In the absence of a mean flow, the short-period cutoff of

first-mode baroclinic waves is approximately 160 days, e.g. (2.52),

so that the waves cannot account for the high frequency content

(i.e. periods of 117 and 121 days) of the data. This is well

.....................
,.- ...,.)..-....-..-.-..-...- ....... .- '. ..... .-. ......... -........... •..... --.- ,-.---... .. -.... . ...... ]
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demonstrated by the wave fits of Model 0. Although the mean

current, as estimated, is very weak (approximately 2 cmVs), it

strongly alters the space and time behavior of the wave-induced

perturbations by producing large changes in the wave periods or

- frequencies (the Doppler effects have reduced the wave periods of

the 3 waves by 202, 164 and 77 days, respectively). Thus, the weak

mean current has played an important role on the wave propagation in

the region.

The approximate solution for linear dispersive planetary waves

is obtained by neglecting the nonlinear and Tinear-coupling terms in

* the horizontal-structure equations (2.43) for mesoscale motions.

Let us first comment on the linearization and then discuss the

linear coupling in the context of instability theory.

2. Qualitatively, the linearization is valid when the ratio of the

particle to phase speed of the waves is small when compared to

unity. As the ratio decreases, so do the nonlinear effects.

Therefore, by shortening the wave periods and hence increasing the

hase velocities, a westward mean current can weaken the nonlinear

interactions between the dispersive waves, thus making the linear

approximation better. The magnitudes of the phase and particle

velocities of the observed dispersive primary waves were computed

and the results are presented in Table 6.1a. Furthermore, the

magnitudes of the phase velocities of the waves, computed as if the

mean current were absent, are also presented in the same table. It

is seen that if the weak mean current were absent, the validity of j
.......

:; ... ... . .. . . . . .- . . .. .......-
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the linearization for the wave motions would be harder to justify.

The pressure amplitudes of the secondary waves forced by the

observed primary waves, computed using (2.66), and the pressure

amplitudes of the primary waves themselves are given in Table 6.1b.

The ratios of the rms pressure amplitudes of the secondary to the

primary waves are approximately 1/4. Thus, there could be upto a 25

percent error in the linearized wave solution.
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able 6 .la

Magnitudes of the phase and particle velocities of the primary

aispersive waves; the phase speeds in parentheses were computed by

setting the mean current to zero.

wave i.d. no. phase speed wave-induced current

i (cm/s) (c/Vs)

1 6.1 (2.2) 2.2

2 3.4 (2.2) 4.0

3 18.3 (10.5) 1.8

Table 6.1b

Pressure Amplitudes Of The Primary And Secondary Waves

i.d. no. of amplitudes of amplitudes of ratio of

interacting primary waves forced waves rms

primary waves (105kg/km s2) (lo 5kg/km s2) amplitudes

1 2 .598 1.236 .035 .014 .02

1 3 .598 .935 .023 .330 .30

2 3 1.236 .935 .044 .155 .10
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Since we have observed a horizontally stratified flow with

vertical shear, we shall investigate the stabilitity of the flow in

the presence of wave disturbances. The corresponding instability

phenomenon is baroclinic. k~en it occurs, the available potential

energy of the sloping-isopycnal mean state is converted to the

potential and kinetic energy of the perturbations. A consequence of

baroclinic instability is that the wave disturbances will grow and

the tilted mean-state isopycnal surfaces will become more

horizontal, that is warm fluid will rise and cold fluid will sink.

Another instability phenomenon, which is not considered here, is

barotropic in which the kinetic energy of the mean flow is converted

to the Kinetic energy of the perturbations. Barotropic instability

can only occur if the mean flow has a horizontal shear. The

interested reader is referred to Pedlosky (1979) and LeBlond and

MysaK (1978) for discussion on both barotropic and baroclinic

instabil ities.

Mathematically, the linear couplings in (2.43) give rise to

baroclinic instability. Assuming the ocean bottom is flat, dropping

the nonlinear terms, and performing a triple Fourier transformation,

(2.43) can be cast as an eigenvalue problem in matrix algebra: .:

[a11  1 = o (6.1a)

a., all 
,: ,
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wi th

-ekall - - (u 0k+ v 01) (6.1b)
k +1

a22 =-Bk + (u 0k+v 01) il 1 (u 1k+v1 ) 2+ (6.1c)
k 2+1 2+Xk 2+1?x

a 2  u k +vil (6.1d)

and

a 21  (u 1k+v 11) k 1- 1 (6.1e)

k + 1 x

where clio=1.932 is evaluated by (2.36b), x=5.149x104 kiF2

is the inverse of the internal radius of deformation of the 1st mode

squared and 60(kl I a) and 6~1(k,l ,a) are the spectra of the

modal-amplitude functions of the 1st and 2nd mode perturbation

pressures, respectively, as defined in (2.47). The modal-amplitude

vectors of the barotropic C nd barocl inic mean currents are denoted

by (u0,'v ) and (u19v1) respectively. For a given

wavenunter vector (k,l), the wavefrequencies othat is the

eigenvalues, are given by
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o,(k,l)=(a 11 +a2 2 )/2 * 1 1 -a22 
2+4aa 1 2 /2 

(6.2)

,.

Note thdt the coupling is caused by the barocl inic mean current

only, and when coupling is neglected a- and a+ are the same as

the frequencies of the dispersive barotropic and baroclinic waves,

respectively. For disturbances with (k,l)'s satisfying

2 ((al 1 -a2 2 ) < -4a12a21 (6.3)

the wavefrequencies are complex. Under this condition, since +"

and a- are complex conjugates, one of them must have a positive

imaginary part that corresponds to instability.

To investigate whether the observed waves are unstable, we

solved (6.3) for the region of instability in the wavenumber domain,

*:-:.: i.e., k-1 plane, using the estimated values of (uoV O) and

(ul,vl). The shaded area on the k-l plane as displayed in

Fig. 6.1 is the region of instability. In the figure, we also plot

the locations of the observed wave disturbances. The disturbances

are all located outside the shaded area, implying that the waves are

stable, at least in the general area where the experiment was

conducted. However, we must warn that, as the waves approach the

western boundary, they may encounter changes in the direction and

intensity of the mean flow such that some or all of the three waves

I..*4 , .:. .
-. d* 4 - , . 4 . . . . . -. . ,'.] .
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Figure 6.1. The stability of the vertically sheared mean flow in

the tomographic region in the presence of wave disturbances in the

first baroclinic mode. The region of instability on the

(k,l )-plane, i.e. in the wavenunter domain, is the shaded area, and

the wavenunjber vectors of the observed disturbances (1are in the

stable region.

.~~~. - 21.
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can oecome unstable and develop into intense eddies. This is

because, as the mean current becomes stronger, the region of

* -instability becomes larger; also as the flow direction changes, so

does the location of the unstable region.

In spite of the fact no inconsistency between the theory and

observations has been found, we recognize that a complete

investigation of the wave dynamics was disallowed by the limitations

imposed by the data. First, we were unable to observe any weakly

nonlinear phenomenon of the baroclinic perturbations because the

data occupy a time interval which is less than one wave period.

Secondly, due to the insufficiency of explicit current measurements,

we were unable to observe the barotropic waves.

J..

.................. ,.-, -.... . ........................... .. '
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6.3 Comparison With The MODE Wave Fits

The Mid-Ocean Dynamics Experiments, MODE-O and MODE-i, were

designed to investigate mesoscale motions and their role in the

general circulation in a -400 km square region at 28N, 6940'W,

just north of the tomographic region. MODE-O was a collection of

several pilot studies that were carried out between 1971 and 1972 to

identify the space and time scales of the energies. It was then

followed by MODE-1 in the spring of 1973, which is probably the most

comprehensive large-scale experiment to date. MODE-i lasted for

about 4 months.

-McWilliams and Flierl (1976) have fitted the planetary-wave

model to the MODE-O and MODE-1 data sets, separately. While the

former contained only current-meter records from 7 separate moorings

and mostly from beneath the main thermocline, the latter was a much

larger and more uniform data set, obtained from a variety of

instruments: current meters, moored temperature sensors, CTD's and

STD's, and SOFAR floats. The MODE-O and MODE-1 data sets have

durations of 3 and 4 months, respectively. In constrast to the

observational system deployed in the tomographic experiment, the

MODE arrays consisted of spot measurements only, which unlike the

acoustic travel-time measurements, could be severely contaminated by

undesirable small-scale features.

In the same way as our study but for weighting, McWilliams and
cmo

,. .Flierl chose the optimal wave parameters to minimize a quadratic

. . * . . .
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error norm for the differences between the data and the fit.

Instead of specifying the weighting factors in the error-norm

minimization according to the noise variances, as was done in our

stochastic estimates, they have assigned equal weighting to each

datum of the same type and made total data energies equal for all

types when incorporating data of different types. Under the

circumstances, we believe that their estimates do not differ

significantly from the stochastic maximum-likelihood estimates,

because estimates are, in general, not sensitive to the choice of

weignting factors when the number of data is much larger than the

number of unknown parameters.

The best MODE-O fit has a high correlation of -0.8 with the data

and accounted for over half (-60 percent) of the data energy. It

consisted of a pair of barotropic waves and no baroclinic waves,

- . propagating in the absence of mean flow. The reason for not being

able to observe any baroclinic waves is probably that MODE-0 was

primarily an experiment of the lower layer (below the main

thermocline) where the barotropic-mode kinetic energy dominates.

Alitnough a few current-meter records from the main thermocl ine were

available, they came from only two horizontal locations. Therefore,

they were not adequate for resolving baroclinic waves, since each

wave involves at least 4 free parameters. In contrast, the

tomographic experiment was primarily for the observations of the

baroclinic modes. In the experiment, the acoustic array, the CTD

casts and the moored temperature sensors and recorders, all probed

the temperature field in which the baroclinic-mode effects dominate,

CA.
,'. -...• .• ............................................ ,.' -...-.- '.-',." "."" '-, . "- .',.. .-.. .- ".. . .-.. . . .•. ." • "
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and for the same reasons as above, the current data from only 2

horizontal locations were inadequate for resolving barotropic waves.

Nonlinear interactions within the MODE-O wave fit and our wave

fit to the data of the tomographic experiment were found to be weak:

forced wave amplitudes were predicted by the weakly nonl inear theory

to be about 20 percent of the primary wave amplitudes. Thus both

. sets of waves represent fully consistent 1 inear solutions.

On the other hand, both barotropic and baroclinic waves were

observable by the MODE-1 array that contained both adequate current

and temperature measurements. The best MODE-i fit, having a

correlation of -0.7 and accounted for 1/2 of the data energy, has a

pair of barotropic and a pair of first-baroclinic waves. Consistent

with the MODE-O fit, no significant energy of the mean flow was

found. However, unlike the other two fits, nonlinear interactions

were found to be of marginal but uncertain importance within the

MODE-i fit: forced wave amplitudes were predicted to be large and

comparable to the primary wave amplitudes. But, by searching in the

data for the forced waves with the given frequencies and

wavenumbers, McWilliam and Flierl have found no significant energy

in them. To explain this, McWilliams and Flierl suggested that the

nonl inear transfers of energy might have acted in such a way as to

preserve crucial features of the linear solution, empirically.

From the results of the 3 wave fits, we can summarize the

dynamics of the mesoscale motion in the general area where MODE-O,

MODE-i and the tomographic experiment were conducted as follow:

o- - - . . - -...
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(1) The motion appears to be dominantly wave-like: planetary

waves have consistently accounted for more than and about 1/2 of the

total signal energies observed in different places and during

different time periods.

(2) The vertical structure is dominated by the barotropic and

the first baroclinic modes, with the latter containing the greatest

fraction of the available potential energy among all the vertical

modes.

(3) Locally, the space-time behavior of the motion is well

predicted by the dispersion relation, i.e. linear dynamics. But, as

the lengths in space and time considered increase, the linear

prediction becomes less accurate; this is demonstrated by the fact

that the MODE wave fits, which involved a larger region and longer

durations, have poorer quality (i.e. smaller correlations and less

signals accounted for) than our wave fit. Thus, planetary wave

propagation is strictly a local phenomenon.

(4) Most of the waves observed in the three experiments have

westward group velocities, suggesting that wave disturbances are

originated in the east.

(5) The phase propagation is generally westward, and the wave

lengths of the propagating baroclinic waves are typically of order a

few hunareds of kilometers.

(b) Evidence exists for the existence of a westward mean flow

with diminishing flow energy towards the north: a weak westward mean

flow with vertical shear was found in the tomographic region and

,I' .
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vanishing mean-flow intensity was found in the MODE region.

(7) In each of the three experiments, MODE-0, MODE-i and 1981

* - Ocean Tomography, the data exhibited more high frequency variability

, than the wave fits. Therefore, nonlinear wave-wave interactions

must be consequences of wave propagation.

(b) Stronger nonlinear wave-wave interactions should occur in

the north, because the westward mean flow can reduce the

interactions in the south by increasing the westward phase

velocities there.

,elm
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. 6.4 Comparison Of The Different Mapping Methods

Previously, Cornuelle (1983) and Cornuelle et al. (1985) have

.. .I used the same acoustic and hydrographic data to map the ocean.

Their mapping, however, was performed on an "objective" and "daily"

basis, and the two sets of data were used separately in independent

linear inversions. The mapping performed by us differs from that of

Cornuelle et al. in three major aspects: (1) we have incorporated

the hydrographic and the moored temperature data together with the

acoustic data in the same inversions, (2) this mapping is

"subjective" and takes into account the time-dependence of the

field, and (3) the system being solved here is nonlinear with

-.. respect to the unknown parameters. By "subjective" mapping, as

oppose to "objective" mapping, we mean that the space-time relation

" " imposea on the unknown field in the inversion of data is a

deterministic one.

In this section, we will first describe the method of Cornuelle

et al . and discuss the differences and similarities between our

methoa and theirs. We will then present some possible extensions of

their method to take into account the time-dependence of the field.

. The advantages and disadvantages of the different methods will also

be discussed. A discussion on the improvement on the inversion

result due to the incorporation of the spot measurements will be

presented in the next section. For the purpose of making the

algebra as simple as possible in this discussion but without loss of

- 7 2
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generality, let us assume that the positions of the acoustic

moorings are accurately known in the following mathematical

formulations. (A discussion on the effect of unknown mooring motions

on the estimate of 6c is presented separately in Ch. 7.)

Cornuelle et al . wanted to obtained the best possible estimate

of the perturbation field 6c(x,tk) of sound speed in space

x=(xy,z) on the days t=tk's of the acoustic transmissions, based

on the acoutic data alone. They have chosen a linear estimator and

defined the best estimate to have minimum variance. Their method of

inversion is analogous to the objective mapping of Bretherton et al.

(1976), in wich a specification of the autocorrelation function of

* the unknown field is required. Cornuelle et al. have assumed that

the unknown field 6c(x,t) to be horizontally homogeneous and

temporally uncorrelated. Based upon the analysis of Richman et al.

(1977) on the MODE-array data, they have taken the horizontal

autocorrelation function to be Gaussian in shape with a decay scale

of 100 km. Vertically, they have chosen to represent 6c by the

empirical orthogonal modes derived from the MODE-hydrographic data.

Thus, the correlation function can be expressed as

< 6c (x,y,t)6c (x',y ,t')>= a 6(t-t )e [(x -x '1 -Y )2]/(100 km) 2

i=1,2,3,...., (6.4)

whiere 6ci represents the horizontal structure of the sound-speed

perturbation associated with the ith mode and 2 is the

-.. i1
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expected energy of 6C

. The tomographic system solved by Cornuelle et al. is linear and

may be cast parametrically, at time tk, as

6t°(tk) = A a(tk) + v(tk) (6.5)

where 6t°(tk) is an mxl data vector containing the observed

travel-time perturbations, v(tk) represents the noise vector, and

a(tk) is an nxl parameter vector to be estimated, containing the

unknown amplitudes of the sinusoidal wavenumber components of

6ci . Unlike the other quantities in (6.5), the linear operator A,

that is an mxn weighting matrix, is time-independent, and A can be
evaluated using (3.8). Because 6c.'s are spatially homogeneous,

the Fourier coi.,ponents in the wavenumber spectra are uncorrelated,

implying that the time-independent covariance Ca of a(t) is a

diagonal matrix. Clearly, an advantage of choosing to estimate a

instead of the 6ci s themselves is the minimization of the storage

area required in the computer. Since the system (6.5) is linear and

- - the sound-speed perturbation and noise are uncorrelated, the

Gauss-Markov Theorem immediately asserts that among all linear

":"-"estimates, the one with the smallest variance is

a*(t (tk )ATCI (tk )6t(tk) (6.6)

where

." . .o
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Ca*(tk) v L, (tk)PCl 1 (6.7)

is the error-covariance matrix of a*(tk) and Cv(tk) is the

covariance matrix of the noise v(tk) (Liebelt, 1967). An

interesting fact is that the same estimate can be obtained by

maximizing (minimizing) the corresponding likelihood (objective)

function. This is not surprising, however, because as we may recall

from the discussion in Ch. 4, when the system is linear and the a

priori information is incorporated as data in the system, the

maximum-likelihood estimate has the lowest theoretically attainable

- variance. Therefore, an obvious similarity between the method of

Cornuelle et al. and ours is that they both compute

maximum-l ikel ihood estimates. However, they did not consider the

* -. time-dependence of the field in their inversions; their estimates

thus were three-dimensional ones.

The generation of a four-dimensional estimate is more

desirable. One reason is that the quality of the estimate of the

unknown field is generally improved when the set of observations

used in the inversion is enlarged. In the detection of narrow-band

planetary waves from the data, we have mapped the ocean on a

subjective and four-dimensional basis, by imposing that the local

sound-speed field is predominantly perturbed by the waves. That is,

in the inversions, we have required the wavenumber spectra to be

sharply peaked at some wavenumbers and the spectra at different

times to be related by the dispersion relationship. It is 7]

* - * - . C
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understood from inverse theory that, if the unknown function is an

impulse, the best linear estimate of the function will generally

contain side lobes in addition to a main lobe at the location of the

impulse (Wiggins, 1972, Wunsch, 1978, etc.). The leakage of energy

to the side lopes and the broadening of the main peak is a

consequence of the lack of determining power which is always

associated with an underdetermined system. The implication is that

narrow-band planetary waves cannot be adequately resolved by

directly estimating the parameter vector a(t) that represents the

continuous spectral-amplitude functions. One way to eliminate the

, side lobes and sharpen the main lobe is to reparameterize the

- wavenunver spectra by the location, amplitude and phase of the

peaks, and this is exactly what we have done to implement the

narrow-band constraint in the inversions.

The narrow-band constraint transforms the underdetermined linear

A. systems at different tk into one overdetermined, nonlinear

system. The linearization of the nonlinear system with respect to

the unknown wavenumbers is not valid because the phase functions of

the waves can be of order one or bigger at large distances and

times, implying that we cannot use standard direct techniques such

ds Gaussian elimination and the singular-value decomposition, and

must resort to the use of iterative minimization methods for the

inversions. We prefer gradient methods over other iterative methods

because they guarantee convergence (Ch. 4).

.- .",,." .|
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The error covariance of the estimate associated with the linear

system (6.5) does not dependent on the data and the estimate itself,

out only on the statistics of the unknown field and noise, and the

geometry of the acoustic array. Difficulty in the analysis of

variance increases once the estimation problem becomes nonlinear.

In fact, the variance of our nonlinear wave fit could not be

obtained before the estimate was computed. Therefore in the design

of tomographic experiments, it is definitely more convenient to work

with the linear systems. However, the wave fit accounts for the

dynamics.

While Cornuelle et al. have adopted the empirical modes (derived

from the MODE data) as the vertical basis of the sound-speed

perturbations, we have, instead, adopted the analytical modes of

Rossby waves. An advantage in using the analytical modes is that

the corresponding horizontal-structure equation can readily be

obtained from the literature. The 1st and 3rd empirical modes

strongly resemble the 1st and 3rd baroclinic analytical modes, and

the 2nd empirical mode is strongly surface-intensified. (The

empirical modes are ordered according to the ratios of their

potential energy, with the most energetic one being defined as the

ist mode.) The first four empirical modes were used by Cornuelle et

al. (1985) and assigned equal energy a priori; however, their

inversions have yielded a result of 1 0.1 0.05 for the ratios of

the energy of the first three moaes, showing consistently that the

verticdl structure is dominated by the ist baroclinic mode.
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Moreover, the amplitudes of the higher modes were poorly determined,

because most of the ray paths identified did not penetrate into the

mixed layer to sense the surface-intensified mode, and the other

nigher modes are basically transparent to acoustic tomography (see

Ch. 3 for the discussion). Our inversions, therefore, have not

attained a poorer vertical resolution although only the 1st

oarocl inic analytical mode was used.

In oojective mapping, the experimental noise basically consists

of the measurement and internal-wave related errors that generally

have zero expected values. However, in subjective mapping, the

additional error introduced by the idealizations and assumptions

usea in builing the dynamical model may have a nonzero statistical

average. A consequence of the zero-mean hypothesis on the errors

that in real ity have nonzero expected values is the generation of

bias error in the estimate. To illustrate this, let us suppose that

tne model equations 6t 0 =f(E)+v' associated with a pure acoustic

detection of narrow-band planetary waves can be linearized about the

true values pt of the wave parameters p, so that the expectations

of t 0, p and v' are related by, approximately,

<= =af(Pt)m v°~'.:" <6to> 0 > afP + <V'> .(6.8)

After solving the linearized system and then using (6.8), the

expectation of the maximum-likelihood estimate p* can be written

. ::2i--
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approximately as

<>= pt + b (6.9a)

where

b L( af(Pt )TC(af(pt))]'i[f(Pt)T -1(.'_ =- -i 1 v < ( 6 .9 b )

is the bias of the estimate and Cv, is the covariance of v'.

Clearly, the bias exits when <v'> is not zero.

In spite of the generation of bias in the estimate, subjective

mapping has its appeal. By trying many different dynamical models

in the inversions, the data can make diagnoses for plausible

dynamics. Hence, one can learn the dynamics of the field directly

from the inversions and then use the knowledge gained to make model

corrections. In fact, the generation of bias is not of major

concern, since when the model used is accurate, the bias will be

small. Moreover, the estimate generated by objective mapping is

also Diased. Using (6.5), (6.6) and (6.7), we can easily show that

the expectation of the objective estimate of a(tk) is given by

<a*(t = Tclt )A+Cl- ATC (t )A at(tk) (6.10)

where at(tk) is the true value of a(tk). Clearly, the

• -'-,:-'...a -. .....................................................-................."".....- .. " -:'-2".'" " ' -"-.'i ":. °-"-
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objective estimate is biased, i.e. <a*(tk)>lat(tk), unless no

V 'a priori information is asserted, that is unless the a priori

covariance C. approaches infinity. But, if Ca approaches

infinity, so will the error covariance Caa* of a* (which is

expressed in (6.7)), because ATCl(tk)A is singular. As a

matter of fact, sufficient a priori information must be supplied to

generate enougn bias to ensure the stability of the inversion.

The inversion method of Cornuelle et al., which uses the linear

minimum-variance criterion for the estimates, in principle, can be

moified to become four-dimensional. An objective approach is the

implementation of tne time correlation of the field into (6.4) and

the expansion of system (6.5) to include observations at other

times. Let us suppose that there are N+1 equally spaced data points

in each time record of travel-time perturbation, so that the

expanded system can be cast as

= Alas v (6.11a)

where

F 0 6t A 0 v t 0f"

6t-= , = , = and v=

L ?t_ )j LA ~ L v(tNjN.- [A aN_ v(t

(6.llb)

Once again, the linear minimum-variance estimate a'* of a' can be

found by applying the Gauss-Markov Theorem, at least in theory.
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However, the implementation of the estimation procedure on available

computing machinery may not be feasible, since the storage

requirements for the covariance matrices Ca of a' and Caa,* of

a'* can be large and thus the computation of a'* might be too

costly. To obtain a*, we need to evaluate its (error) covariance by

_c(A' = IAI.C . (6.12a)

or equivalently, as shown in Liebelt (1967), by

KT T..

= CaC ,AT)(A'C AT+C -1 (C A T )T. (6.12b)

Because the system is highly underdetermined, the latter formula

(6.9b), which involves the computation of the inverse of a smaller

matrix should be used; the inversion of this m(N+l)xm(N+1) matrix

* would consume the largest portion of the total computer time

required to produce the estimate. Since the time required to

perform a matrix-inverse operation is approximately proportional to

the cube of the row (or column) dimension of the matrix (Dahlquist

and Bjorck, 1974), this four-dimensional objective mapping can be

very inefficient for large N.

An alternative approach, which is subjective, is to impose a

deterministic relation instead of a statistical correlation between

the perturbations or the wavenumber spectra at different times. In

.°..n -
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' this case, a linear, minimum-variance, four-dimensional estimate can

also be obtained if the dynamical relation is linear or can be

closely approximated by a linearization at all time steps, such that

a(tk+l) =Pka(tk); k=O,,2,...,N-1. (6.13)

With the presence of the dynamical relation (6.13), the number of

independent or free parameters in (6.11) is drastically reduced, and

one can choose the unknown to be the initial spectral amplitudes

a(t O ) or the spectral amplitudes at any other time. As a result,

the covariance matrices are nolonger overly large. Furthermore, the

linear, minimum-variance, subjective estimate can be computed using

"*." an accelerated algorithm for a Kalman filter that corresponds to a

.. sequence of predictions and reestimations at each of the time steps

((elb et al ., 1974), so that an abundance of computation time can be

saved. In (6.13), the P.'s are often called the transition

ma tri ces.

A derivation of the sequential-reestimation algorithm through

the minimization of the corresponding objective function is

presented in Appendix, and we will demonstrate the superior

efficiency of this algorithm next. In Appendix, we show that, by

-.. choosing a(tN) to be the free parameters, the optimal estimate

-. a*(t.) of a(tN) can be obtained by sequentially computing
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- * 1 T -1 0  -1".-"_a (t + )  = H .z[A C (t Al  t (tl  )+ca  tl l )aP(tl+)

(6.14a)

in order of increasing 1 where

H 1I (tl +l)[Ca(t )A T[ A C (t )A T+C )]'l[C (t )AT]T,-+1 = a I1 Q -a ti+1) T ( a 1+ 1 .t 1 +1 -a1+1 -
(6 .14b)

and

Ctl+) = Dt (6.14d)

There are altogether N+1 appl ications of (6.14) in the sequence, and

in each application, the computation of the inverse of an mxm matrix

is involved (as indicated in (6.14b)). Hence, the total computer

time required by the sequential-reestimation algorithm is

proportional to (N+l)m 3 . Thus, when compared to the

four-dimensional objective mapping, subjective mapping with a linear

or linearizaole dynamical relation is (N+1)2 times faster. For

large N, the computational cost saved by the sequential- reestimati on

alogrithm in performing a four-dimensional mapping can be

substaintial.

A-.-'K-.- -.
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One would probably consider using the economical

sequential- reestimation algorithm when the sound-speed perturbations

are assumed to be produced by broad-band planetary waves. However,

one must be aware that the applicability of the algorithm depends

critically on the validity of the linearization of the dynamical

relation. When the relation is nonlinear, the error introduced by

the linearizations involved at each time step demands special

investigation, since the error can propagate along the reestimation

sequence and be amplified. Thus, the presence of a mean flow in the

tomographic region can present some difficulties in the

implementation of the wave dynamics into the transition matrices

Pk, because the dynamical relation between the wavenuber spectra

at different times is nonlinear when the intensity and direction of

the flow are unknown. (However, even when the linearization is

invalid, one may still estimate the broad-band spectra by iterative - -

minimization techniques.) This broad-band, subjective mapping has

yet to be performed, but it should be of interest to compare the

hypothesis of broad-band to the hypothesis of narrow-band wave

disturbances in describing the mesoscale fluctuations in the region.

We have used the iterative gradient method of Fletcher and

Powell (1963) for our nonlinear inversions, that is the wave fits.

In order to obtain the gradient vector of the objective function,

which is required by the method, the gradient vectors of the

wave-induced travel-time perturbations must first be computed, which

involves integrating the derivatives of the wave-induced sound-speed

I' J
i - . -. -•- - ."-",L.?='- -- . .4
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perturbations with respect to each of the wave parameters along all

the 1ong-range ray paths used. The method, therefore, could be very

inefficient if the integration operations were to be performed at

each iterative step of the minimization process. To accelerate the

process, we have precalculated the matrix A of the linear system

(6.5) and have it stored in the computer, so that the gradients

could be interpolated by a two-dimensional cubic spl ine whenever

they were needed. Excl uding the computer time required to compute

A, each minimization consumed 40 to 60 minutes on a VAX 11/780. We

-also experimented the daily (i.e. three-dimensional) objective

inversions using Gaussian-elimination techniques on the VAX 11/780

and found that each of the inversions would consume approximately 5

" "minutes, again excluding the time required to compute A. Therefore,

by projection, the time required to do a broad-band,

four-dimensional inversion using the sequential-reestimation

algorithm involving 8 time steps (i .e. N=8) or to do a sequence of 9

daily inversions is approximately (N+1)x5=9x5=45 minutes. This is

quite comparable to the time required to do one minimization of the

objective function of the wave parameters, with the same nunber of

* data incorporated. Finally, the time required to do a

time-dependent objective mapping that incorporates the same nuner

of data is approximately, again by projection,

* (N+1)2x45=81x45=3645 minutes, indicating that the computational

burden is huge.

.j_"*. , * .. . L~
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6.5 Pure Acoustic Estimates

The spot observations contain some pieces of information about

the waves which are independent to those detected by the acoustic

array. In the wave fits, the additional independent information

acts to enhance the uniqueness and reduce the variance of the

estimates of the wave parameters and the corresponding sound-speed

per turba ti ons.

When the spot measurements are withheld, the estimates are

*. degraded. In Fig. 6.2 and 6.3, we show the maps of the sound-speed

S.estimate on yearday 83 and 120 at a depth of 700 m, generated by a

fit of 3 waves of Model 1 to the travel-time data alone, and

therefore corresponding to the result of a time-dependent pure

. acoustic inversion. The two corresponding error maps are presented

in Fig. 6.4 and 6.5, showing the contours of the standard deviation

of the error of the sound-speed estimate. These errors are about

nalf the size of those errors in the time-independent acoustic maps

produced by Cornuelle (1983) and Cornuelle et al . (1985), but are 2

times larger than those of the optimal fit when the spot

measurements are included (see Fig. 5.17 to 5.19). Furthermore, as

expected, the error maps indicate that away from the central region

of the experimental area, where the ray-path density is low, the

" mapping ability by the acoustics diminishes. Notice also that the

errors on the left half of the square where more ray paths have

traversed are slightly smaller, as a result of the presence of the

. . . . . .*
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Fi gure 6. 2. Sound-speed contours at a depth of 700 m of a pure

acoustic estimate of the wave field in the experimental square on

yearday 83. Contour interval is 1 n/s and the reference sound-speed

at this depth is 1506 im's.
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Figure 6.3. Sound-speed contours at a depth of 700 m of a pure

acoustic estimate of the wave field in the experimental square on

yearday 120. Contour interval is 1 nV's and the reference

sound-speed at this depth is 1506 WVs.
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Figure 6.4. Contours of the standard deviation, at a depth of 700 m

in the experimental square on yearday 83, of a pure acoustic

estimate of the sound-speed perturbations in the wave field.

Contour interval is 0.1 'm's.
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Figure 6.5. Contours of the standard deviation, at a depth of 700 m

in the experimental square on yearday 120, of a pure acoustic

estimate of the sound-speed perturbations in the wave field.

Contour interval is 0.1 W's.
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receiver R5.

In addition to having a larger error variance, the pure acoustic

estimate of the wave parameters is also nonunique. However, the

- .. different wave-parameter estimates do produce a similar pattern in

the sound-speed perturbation, showing, qualitatively, an elliptical

cold eddy, initially located at the center of the experimental

square and slowly moving westward. Consistently, Cornuelle et al

have also observed a similar pattern from their objective acoustic

miaps.

Al though the travel-time data obtained from this first

tomographic experiment are not powerful enough to determine the wave

parameters by themselves, they certainly have contributed

significantly to the success of the detection of the waves. The

dynamical field in the time period separating the two CTD surveys

- cannot be extrapolated from the surveys alone; one can hardly deduce

any relation between the two CTD maps (Fig. 5.11 and 5.15) but only

to observe from them that the initial cold eddy has disappeared and

a front hias appeared in the experimental square at the later

period. Furthermore, the moored temperature time series obtained at

three horizontal spots that only occupy less than 1/4 of the square

cannot possibly determine the directions of wave propagation. (The

fit with three waves to just the CTD and moored temperature data was

found to be nonunique.) Thus, the travel-time data has provided the

essential information on the westward movement of a cold pattern

that links the other information.

..................- " . "



221

We have learnt from simulation inversions that when the

locations of the acoustic moorings are known, the wave parameters

can be uniquely determined by the travel-time data alone. In the

experiment, however, the acoustic moorings S4 and R5 had no

mooring-motion data, and all the other acoustic moorings had some

gaps in the mooring-motion data series. Therefore, the failure to

tracK all the acoustic mooring motions has prevented the tomographic

array to perform optimally in the wave observation.

New et al. (1982) and Munk and Wunsch (1982) have studied the

horizontal resolution of the tomographic configuration of the 1981

experiment for a perfectly navigated array, using the Backus-Gilbert

method (1967, 1968 and 1970). By considering the worst case, that

.-] is without the use of a priori information such as the temporal and

spatial correlations of the field, New et al. have found a minimum

average resolution length of 100 km (i.e. 1/3 of the array size).

By incorporting spatial correlation, Munk and Wunsch have reported a

resolution length of order 50 km. Thus, the tomographic array is

potentially capable of resolving waves or isolated oceanic features

of lengths as short as approximately 100 km. In order to attain the

same resolution, a conventional spot-observational system would

.,-, * require at least a total of 36 moorings, that is a minimum of one

mooring per 50 km square (a criterion from the Sampling Principle

(Steiglitz, 1974, and Bendat and Pierson, 1971)). In comparison,

the tomographic system that consists of only 9 moorings is therefore

more economical and adequate than a conventional system for ocean

~ , ' " • .'
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monitoring when the acoustic moorings are tracked accurately.

Besides resolution, an important measure of system performance

is the variance of the estimate. For perfect navigation of the

acoustic array, a first-baroclinic perturbation signal of 2 v's

,. . (rms) at 700 m depth, a horizontal Gaussian correlation of the field

with a decay scale of 100 km, no correlation in time, and a noise

* " level of 5 ns, the standard deviation (i.e. the square root of the

variance) of the pure acoustic estimate at a depth of 700 m is

contoured in Fig. 7.1. It is seen that over 60 percent of the

-.. tomograpnic region, mostly in the middle of the square, has a

standard deviation which is below *0.4 ms or less than 20 percent

of the signal. However, the error increases to 40 percent near the

western and the eastern boundaries where the arrays of sources and

receivers are located. The increase in error is due to the fact

that the ray-path density is the lowest near the acoustic moorings.

It is obvious that the system performance can be improved

efficiently by mounting temperature recorders on the acoustic

moorings. In doing this, the number of moorings used in the

observational system stays the same but the variance is reduced in

the areas near the moorings.

., . . . .

. . .
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6.6 Concluding Remarks

The main purpose of this study has been to investigate the

existence and dynamics of planetary waves in the tomographic region,

and to find out whether the waves, when present, could be detected

from the data of the experiment. The detection process consisted of

thle estimation of wave parameters and diagnosing the plausible wave

dynamics with the data. From the result of the estimation, we have

come to the following conclusions: (1) stable and dispersive

planetary waves did exist, at least as a local phenomenon in space

ana time, (2) the wave propagation was strongly affected by the

local mean flow, even though the mean flow was weak (a few cnv's),

and (3) due to the existence of some experimental deficiencies such

as untracked mooring motions, the tomographic observational system

alone was unable to detect the waves; however, the spot observations

have provided the additional information needed to make the

detection successful.

In this particular study, we have demonstrated the usefulness of

imposing dynamical constraints in the inversions of data. That is,

by imposing different but plausible dynamics, one can learn the

dynamics of the field directly from the inversions. The

incorporation of dynamics may happen to convert a linear system to a

* nonlinear one, as this was our case, but we should not be disturbed

by this consequence, since there are many iterative minimization

techniques available for nonlinear inversions. However, in the

X -A - .
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design of future tomographic axperiments, it is still recommended to

work with linear systems whenever possible, because the

corresponding sensitivity analyses are much simpler and analytically

more tractable (Ch. 7 illustrates the use of I inear systems for one

such analysis).

A significant consequence of the incorporation of the wave

dynamics was the observation of the barotropic component of the

local mean flow through the dispersion relationship, which would

otherwise be impossible to observe due to the lack of explicit

current measurements (unless some other assumptions were made, such

as the level of no motion). We have also obtained an estimate of

the baroclinic component of the mean flow, corresponding to a

westward shear flow of the 1st baroclinic mode. Supporting evidence

for the presence of such a sheared mean flow in the tomographic

region can be found in Cornuelle et al. (1985): they have computed

the aifference between the average sound-speed profiles in the

tomographic and MODE regions, and the differenced profile strongly

resembles the first baroclinic mode (Fig. 3.6); moreover, it is

negative and negative perturbation implies the flow direction is

westward. In Fig. 6.6, we show the profiles of the mean current

obtained in the optimal wave fit.

One of our goals was to investigate whether planetary waves

coula be detected by acoustic tomography alone. It was, perhaps, a

little bit disappointing to find out that the tomographic system

deployed in the experiment was not able to do so alone, that is to

. .: -: -. 2 / -. ---..-. .- -. . .- -. .. -. - ,- .- .. ...--........ /-- ....-
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determine the wave parameters uniquely. But, we must keep in mind

that this was only the first field test of such observational

*system, and therefore the system was far from being perfect. It can

be shown in computer simulations that the waves would have been

detected if the noise level was reduced to -5 ms or the mooring

positions were accurately navigated, suggesting that the tomographic

system is potentially capable of detecting such waves by itself.

*, Obviously, the spot-measurement system deployed was also unable

to detect the waves alone. The reason is that the system did not

obtain any information on the wave field over a long period (-40

days) between the two CTD surveys, except at three horizontal spots

where the midwater temperature recorders and sensors were moored.

As to the spot-measurement system, the inclusion of the acoustic

data provided the missing information needed to make the detection

successful. In view of the pure acoustic objective maps in

Cornuelle (1983), Cornuelle et al. (1985) and the result of our pure

acoustic wave fits, we may describe the acoustic data as containing

the information of the westward movement of a cold pattern. This

information has filled the gap between the two CTD surveys and the

moored temperature data at three horizontal spots to give a unique

estimate of the wave parameters.

In retrospect, the major obstacle to understanding the

large-scale fluctuations in the ocean interior has been the

difficulty in observing them. Traditional observational systems by

k%"'
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themselves are not adequate for large-scale monitoring, because an

excessive amount of ship time and too many instruments would be

required to attain the proper resolution of the field. The newly

invented technique of acoustic remote sensing, however, holds great

promise (Munk and Wunsch, 1979, and The Ocean Tomography Group,

1982). A full tomographic system is much more cost-effective than a

full spot-measurement system and has the potential to provide

adequate mapping by itself, as has been demonstrated by Cornuelle et

al. (1984). In this study, we have further demonstrated that a

tomographic observational system, when incorporated with sparse spot

measurements and the plausible dynamics of the field, is certainly

capable of making observations of large-scale phenomena.

. ,,. -- *-. . . .'.
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CHAPTER 7

THE ERROR OF THE TOMOGRAPHIC INVERSE SOLUTION

IN THE PRESENCE OF UNTRACKED MOORING MOTIONS

S"- 7.1 Introduction

In this chapter, we investigate the error of the optimal

solution 6c* for the large-scale sound-speed perturbation 6c in

space x=(x,y,z), attained via a pure acoustical inversion based on

the travel-time data it measured at one moment in time. In

particular, we study the error variance <A6c* 2>=<(6c*-6c) 2> of

6C* in the presence of untracked horizontal random motions 6x of the

2- .moored acoustic sources and receivers. Since we do not consider

time-correlated mappings of dc, the time dependence of Sc, 6x and 6t

is suppressed.

Since the observed travel-time perturbations 6t contain

information on oceanic perturbations integrated along the ray paths

and since the integration automatically filters small-scale oceanic

perturbations, 6t are prominent candidates for the data to be used

--. in estimating the large-scale sound-speed perturbations in

S"' mid-oceans. However, in using 6t, the fluctuating horizontal

.omotions of the sources and receivers 6x must be taken into special

consideration because the dominant portion of 6t is produced by 6x

. rather than 6c. While a horizontal mooring displacement of 200 m

perturbs the travel time by more than 100 ms, a typical mesoscale
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eddy field perturbs the travel times by only about 25 ms in a 300 km

transmission. The large travel-time perturbations produced by 6x

cannot be modelled as part of the experimental noise, because this

will only cause the estimate of 6c to have an unacceptablely large

error variance. The vertical component of mooring motion is not

considered nere because it is usually smaller and produces

insignificant travel time perturbations.

In order to estimate 6x and 6c accurately, the use of acoustical

navigational systems for tracking mooring positions was recommended

by Munk and Wunsch (1979) and deployed by The Ocean Acoustic

Tomography Group during the 1981 Ocean Acoustic Tomography

experiment. The idea is to estimate 6c based on the corrected

travel time data in which the large noise induced by the mooring

motion is removed. However, tracking data can be missing because of

instrument failure; in that case, the best estimate Of 6C is found

by treating the travel-time perturbations induced by 6x also as

signals in a inversion in which both 6c and 6x are estimated,

s inul tanueously (Corr el Ie, 1983, and al so see Chapter 4 for the

discussion on design-parameters subject to errors). In this way, an

optimal estimate 6x* of 6x is also found; 6x*, with no doubt, is a

relidble estimate since the corresponding signals dominate in the

*data. However, the objective of Ocean Acoustic Tomography is to get

a reliable estimate of 6c rather than 6X, and we can expect some

tradie-offs between the quality of the two estimates, for large 6x

can upgrade 6x* and degrade 6c* at the same time.



230

Although the simultanueous estimation of 6x and 6c is the last

resort for missing tracking data, it is worthwhile and interesting

in consicering the economic aspects of Ocean Acoustic Tomography, to

ask whether rel iable mapping of 6c can be generated without the

deployment of navigational systems for tracking mooring motions at

- all. A general answer to the above question cannot be given because

it depends upon particulars: the amount of available information

concerning 6c, such as the statistics of its horizontal and vertical

structure in the ocean of interest, the smallness of the

0 experimental noise compared to the oceanic signal, the tomographic

configuration (geometrical arrangement of acoustic sources and

receivers in the ocean), and the variance a2 of 6x (which
x

depends on the type of moorings used and the forces acting on them),

- all contribute to the answer. Thus, a problem in engineering design

is to decide whether tracking mooring positions is necessary or not,

prior to conducting an experiment in a selected ocean, with the

available statistics of sc and 6x, and a selected tomographic

configuration. The decision can be made only by computing < c'2>

in numerical simulations and seeing if the error is tolerable.

The main purpose of this chapter is to show that there is an

upper bound for <A6c* 2 > as a function of a 2 and this upper
x

error variance bound is rapidly reached with slowly increasing

2 implying that the error of 6c* is effectively independent

of mooring motion once the latter has reached a critical value.

This result simplifies the decision making process because only the
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upper error variance bound is important for the determination of

whether tracking mooring motions is needed or not, regardless of the

size of ax. In the next section, the system of equations with

unknown 6c and 6x are formulated, and the system is then used for

the aerivation of the analytical expressions for 6c* and its error

variance in Section (7.3). Also in Section (7.3), the upper error

variance bound is shown to exist. This upper error variance bound

coincides or approximately coincides with the error variance of a

solution for 6c that is estimated with the "differenced system".

The differenced system, in which ax is eliminated, consists of a set

of "differenced model equations" that relates 6c to the "differenced

travel time perturbation data". In the elimination of 6x, one of

the model equations associated with a resolved ray path for each of

" - the source-receiver (S-R) pairs is used as a reference and

*i substracted from the other equations associated with the other

resolved ray paths for the same S-R pair. The differenced system,

its solution and the error variance of its solution are presented in

Section (7.4). In a computer simulated study presented in Section

(7.5), we demonstrate that the upper error variance bound is rapidly

reached. Conclusions are stated in Section (7.6).

* '. -.. . .
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7.2 The System With Untracked Mooring Motions

Suppose there are NS moored sources (SIS 2 ,...,SNS) and NR

moored receivers (R1 ,R2 , ... ,RNR) deployed in a typical

mid-ocean tomographic experiment, and there are N resolved

multipaths for each of the S-R pairs, so that at an instant in time,

there are a total of m=qxN observed travel time perturbations with

q=NSxNR and a total of u=2(NS+NR) unknown horizontal mooring

displacement components. Let Stil be the travel time perturbation

ooserved from the ith ray path in the set of N resolved multipaths

tnat connects the lth S-R pair; this ray path has a nominal

trajectory given by x(si]) with sil being the arc length along

the patn's trajectory. Let us define the lth S-R pair as the

SJ-Rk pair witf l=NR(j-1)+k. Also, denote the

(eastward,northward) horizontal random mooring displacements of S.

sand Rk as (Ixx ) and (6Xr,6XrI), respectively, with

s=2j-1 and r=2NS+2k-1. It then follows fromCornuelle (1983) that

the linearized model equation corresponding to the datum dtil can

be expressed as

* ~ ~ 11 = - sc(r) d 1  ~
• -w.'.-6t il = / 6l)ds I + ail[(6Xs-6Xr)C°S,6l+(6Xs -6~ )sinl]+Vl

i- 2. co (z) "
- 0  (z) (7.1)

x(si)

where a il is the ray parameter (the sound slowness at the turning

puint) of the ray x(s il), vil is the experimental noise in

-"o..d.• %-

. . . . . . . ."
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6til , c0 (z) is the mean sound speed profile that-varies with

depth -z, and is the direction of the horizontal line of

transmission from Si to Rk, measured in degrees (positive

anticlockwise) with respect to the east-axis (x-axis).

Following Munk and Wunsch (1979), we discretize dc(x) into an

n-dimensional vector 6c with the components being the sound speed

perturbations averaged over small regions (boxes) of equal volume in

the ocean, so that the term involving the continuous integration in

* (7.1) can be approximated as a weighted discrete sum:

.clr) ds !i T 6C (7.2)

c O(z)

x(s il)

with each component in the weighting vector wil being minus the

product of the length of the segment of Sil and the mean-square

sound slowness in the corresponding box. After joining all the

6 xi s in the vector 6x such that

6X = (6x1 ,x2,... P u (7.3)

(7.1) can be approximated, with the use of (7.2), as

-til-= --il 6 Cx + V , (7.4)

where bil is the weighting vector of 6x that has only four nonzero
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components: + ailcosb1 and + ailsin61 in the corresponding

columns as described by (7.1).

We can now proceed to write down the system of equations

appropiate for the tomographic inversion. After segmenting the

complete data vector 6t into partial data vectors 6ti's and the

complete noise vector v into partial noise vectors vi's such that

A-, ti  =(6t ill,6ti2,...,6tiq)T i=1,2,...,N, (7.5)

and

v= (vii v,...,Viq)T  i=1,2,...,N, (7.6)

and approximating all the ail's by a referenced mean sound

slowness (this approximtion has minimal effects on the model

* equations because all the resolved ray paths are near axial ray

paths with small launching angles), the system for estimation can be

expressed as

6t = F p V , (7.7a)

with

rt A B]

TT
.-. where A i is an qxn matri x with wT1l on i ts I th raw , and B is

an qxu matrix with on its Ith row.

.................................
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7.3 The Upper Erorr Variance Bound

We summarize the a priori information as follows: The parameters

6c and 6x to be estimated have zero means and a covariance matrix

SF 6C 0 1 (7.8)

L0 2 

where C and 021 are the covariance matrices of 6c and
-6C X-U

6x, respectively, and 6x and 6c are uncorrelated; I denotes an-u

identity matrix with uxu dimension. For simplicity, all the 6' s ,

are assumed to be uncorrelated with each other and have the same

2variance a2 . We further assume uncorrelated experimental noise

with variance 6v such that the noise covariance matrix is

L_ . (7.9)

We are now in the position to apply the generalized estimation

procedure derived in Chapter 4, which is the minimization of the

objective function s(p) of (4.7), to the present situation. Since

the model equations (7.7) are linear, the unique minimum of sip) at

=p_* or (6c,6x)=(6c*,6x*) is the linear minimum variance estimate,

and its error covariance matrix is identical to the inverse Hessian

matrix H-1 of s(p). After replacing F, C and C in the
--_

equation for H (4.22b) with their present definitions as given in

(7.7b), (7.8) and (7.9), we obtain
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1 ~ C F 1  -2 NT -LL )B.- 6c* sc*,x* Nv ( -i-

.. Cc*,,6x .  -A 6x, BT  a~~ X u +No-v A2 2 T B

(7.10)

with

iC 1 r2 T 1x2
L = (Cc  i ai (7.11)

where C and are the error covariance matrices of 6C*

ana 60, respectively, and Cis the cross covariance
-&6C *,A6X*

matrix of the errors of 6c* and 60. With the use of matrix

identities given in standard mathematical texts for the inversions

of Dlock matrices, we further obtain

-2
C c* = L[ _I o v  N T N 1

- NC A)G( Z A)]l (7.12)

where

(Ba + a2 BTB) 1'(Ba)T (7.13)
X -U x- -X

Furthermore, from the equation for * 14.22a) with p0=O, 6C* can

be equated to
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7.4 The Differenced System

The differenced system can be expressed as

6t Av-A vK-6] K2 [1 42_= L-I - 1 c ± -1"
-4- --. -- .(7 .18)

in which 6x is eliminated. Notice that the elimination is done by

subtracting a set of model equations (dt 1=Al.C+VI ) from the

other sets (6ti=Aisc+vi). The corresponding estimation is

therefore based on the differenced data (ti-6t I), the

differenced model equations (Ai-Ai ) and the differenced noises

The noise of the new system (7.18) is correlated and

has twice the variance of the original system (7.7). The covariance

matrix of the differenced noises is

-q .-4

SC v  + " " ] (7.19)

-q -q -q)

Applying (4.22a) and (4.22b) to the differenced system, and

equating, the error covariance matrixU of the estimated 6c and

the estimate 6c itself become

-2 N N

= [_iA( Ai) (7.20) 7
Ni= i=1

,....... .,. . .. ........... •.... .......... ...... ,-,..,-,,,...,'-..,. , ., -,

w,,.-, . 4 4 ,...-.-..-, .. ....- .- , .,,,. , ,. , 4 ,.4 .4 """"" ° """ " " " " " . " " '". . ......" " " " " """ " " """.. " .4 . , 4 ,,- . - ., ,\-.,
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and

- N N N
S- ~A 1 A)(Z 6ti)J. (7.21)

av  i=1i i=1

Interestingly, if the product q of the number of sources and

receivers coincides with the rank of B when q<u, that is when B is

underdetermined, then we have GU=I and hence U=U and

'c*=6cA*. It is always true that U < UA, and in fact, if a lot

of moorings are deployed so that q>>u and hence the diagonal

elements of G are significantly smaller that unity, then

U<<UA . However, in realistic experiments, q-u, implying that

It is found that the error variance of 6c* for given noise

level , a priori information and geometry of the acoustic array is

oounded approximately between L and UA, as given in (7.11) and

(7.20), respectively, and the error variance approaches the upper

bound UA as ax increases. If in practice ox always exceeded a

critical value such that U is always reached, then U can be

used as a guideline in the determination of whether the tracking of

mooring motion is needed for a given experimental setup. The

crucial question, therefore, is to find how small that critical

- - value of ax is or how large can ax be before the upper bound is

reached. We will pursue the answer through a computer-simulation

study next.

-'- 4.,...

#'---..
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7.b Numerical Results

Computer simulations are used here to study how large a
ax

can be before C 6__ . reaches U~UA for a typical situation. The

tomographic configuration and 58 ray paths of the 1981 experiment

are used in this simulated study; there are q=NSxNR=4x5=-20 S-R

pairs, u=2(NS+NR)=2(4+5)=18 unknown 6xi ' s and about three ray

paths used per S-R pair; the rank of B is 18-3=15. The vertical

structure of the simulated 6c consists of only the first barocl inic

perturbation. Horizontally, the simulated 6c is homogenous and

isotropic, and has a Gaussian correlation function with a decay

scale of 100 km and an rms value of 2 m/s at a depth of 700 m. The

noise variance a2v is set to 52 ms2

The covariance matrices CAdc* for ax=O, 100 m and 200 m, and

tre upper error variance bound U are calculated numerically. The
-A

standard deviation of 6c* (i .e. square root of the diagonal elements

of CAdc.) for ax=O and 200 m, and the upper bound for the

standard deviation (i.e. square root of the diagonal elements of

U ) at a depth of 700 m are contoured in Figures (7.1), (7.2) and

(7.3), respectively. The rms errors of 6c* versus a x at two

representative locations (a) and (b) in space are also plotted in

Figures (7.4a) and (7.4b), respectively. While (a) is located in an

area with a low density of ray paths at the lower right corner of

the experimental region, (b) is located in an area with a high

.o . .

- ... ..
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In this limit, 6c* is also independent of a and can be expressed

as

u N N N
= A t. Z A)GU( t.)) (7.17)

c i=1
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N N NC* (C*)[ T I(
d - - i N TA7)(7.14)

av  i=I

Since 6X* and CAx* are not out primary concerns here, their

mathematical expressions are not presented.

It is seen from (7.11), (7.12) and (7.13) that for a given

amount of a priori information (C ), a given noise level

and a given tomographic configuration (which determines Ai 's), L

is tne smallest error covariance matrix of 6c* that can be attained

using Known mooring motions. If the mooring motions are known so

- that ax=O and hence G=O, then CA6c*=L, and Cac. increases as

ax increases. However, in the limit when 6x is large enough so

that the ratios of a2 to the variances of the signals produced

by 6x (the diagonal elements of a xBTB) approach zero, CA6c.

approaches its maximum bound U and it becomes invariant with x

because G approaches

GU B B, (7.15)

where B is the pseudoinverse of B, and G is no longer a function

of X This upper error variance bound U of 6c* can be expressed

as

N N
1UL-N-1v( A T)U( Ai)]- 1 . (7.16)

U [" N i=1 i=1

| .. - .- N

| . '* - *-..* C . . -,
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Figure 7.3. Standard deviation, at a depth of 700 m in the

tomographic square, of a linear, tomographic sound-speed

perturbation estimate obtained from the differenced system. These

errors are approximately the upper-bound errors. The sound-speed

perturbation has an rms value of 2 n s and a horizontal correlation

length of 100 km. The experimental noise is 5 ms (rms). Contour

interval is 0.1 mWs.
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Figure 7.4a and b. The dependence of the standard deviation of the
linear, tomographic sound-speed perturbation estimate at two
locations on rms mooring displacement in the absence of mooring
tracking. The figures show that the upper standard-deviation bound

is rapidly reached. The upper bound shown is approximated
from the differenced system. The sound-speed perturbation has an
rms value of 2 Ws and a horizontal correlation length of 100 km.
The experimental noise is 5 ms (rms).
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density of ray paths near the center of the region. The upper

bounds for the standard deviation of 6c* at the two locations are

also plotted in the corresponding figures.

It is seen from the figures that the error converges very

rapidly to the upper bound; the standard deviation of 6c* for a

small ax of only 200 m is nearly equal to the maximum standard

deviation. For this particular experiment, it is indicated from

Figures (7.1) and (7.3) that in order to estimate 6c accurately, say

• . to within *O.5 ms, tracking mooring motions is required. Notice

- r that the regions with more ray paths passing through them have

smaller errors only when ax=O, that is only when the oceanic

- . signals are dominant in the data. This is because as far as the

estimation of 6c is concerned, noise becomes dominant in the data

•- when mooring motions are not tracked, and since the regions with

higher density of ray paths resolve more data variance, they also

resolve more noise variance in this case.

. .'. .

,._ .... . .. . . . . . . . . . . ... . . ,
,?.-i. . " - - -,. - .- - . . ' . • ' " . ' " '. -,' ." . --. . . . " - - ' . "- : - < "
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7.b Conclusions

The error variance of the estimated 6c very rapidly reaches an

upper oounci as a2 increases. When the differenced system isX

used, the upper error variance bound and the associated estimate of

6c coincide (or approximately coincide) with the error variance and

the estimate in the estimation process (unless q>>u). Therefore,

the decision of whether to deploy navigational systems for tracking

mooring motions in a particular experiment can be made simply by a

simulated study of the error variance associated with the

differenced system alone, and if this rms error is not tolerable

then tracking mooring motions must be used. The upper error bound

can be lowered by reducing the noise level or increasing the number

of sourses and receivers, and these are the alternatives to tracking

mooring motions when a good estimate of 6c is desired.

. . . ..o. .
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APPENDIX

A DERIVATION OF THE SEQUENTIAL-REESTIMATION ALGORITHM

Let us choose the free parameters of the system (6.11) to be the

spectral amplitudes a(t N) at the final time tN in the sequence

of observations and define the functions s ()of a(t) by

I
5(1) La(t I)] IskEa(tk)]$ (A.1a)

k=O

where

s Ca(t0) 1/2 [6t?t )-A a(t )T C-tt~ [6tht )-A a(t~j
0- 0 0 - -v 0'-0

+1/2 a(t ) TC~ _ ~ A.

T -at [6~ t)-A a(A b

skL±(tk)] =1/2 [Ldt?tk )-A a(tk)]T2vltk) C~~k) a~k)

for k>o, (A.lc)

and a(t k) with k<l is linearly related to a(t) according to the

linear dynamical relation (6.13). In (A.lb), Ca (to ) represents

the a priori covariance of a(t) at to or any other time. Wi th the

noise being uncorrelated at different times, it follows from the

oojective-function approach that the minimum-variance,

maximum-l ikel ihood estimate a*(tN of a(tN can be evaluated by

minimizing

W4 - . .
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s[a(t)] = s(N)l[a(t)] (A.2)
N N

Through a Taylor-series expansion, we can recast the quadratic

function (A.1) as

s(1) [a(t1 )J = s(1 )[a*(t )i + 1/2 [a(t )-a*(t )]
TH [a(t )-a*(t )]

(A.3)

where a*(t l ) is the minimum point and H, is the Hessian matrix

of s(I ) . Furthermore, through the use of (6.13), (A.la) and

'I (A.3), s(1+1) can be expressed as

"sll+l)[alt+ )  1 l[a(t )_aP(tl )T Ca1(t I+I ) [a(tl+l)-aP(tl~ 
] .-

1+ + +1 -a 1+1

.+ Sllaltll)], (A.4a)

where

aPltl+1 ) = l_(t I ) (A.4b)
..-

and

Calti+I) = D THjIDj, (A.4c)

We have neglected the constant term s(I )[a*(t I) in writing down

(A.4a); this is of no consequence in the subsequent minimization of

.".- .' '- ,' .... ' - .. . .- .- .. .-....... . . . - -. . - . ,. . ... . .. . . • -. '. " .- . . -..... -- .. -: -.
"- • - ' - " '- " ' , • " - - ' - , - - ' '- . - 4' . ". ' - .4 '. -" .. "4 . . 7 . " " , . . ' ' ",, . -* -
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s After setting the gradient of s(1+1) to zero, the

unique minimum of s is found to be at

* -1 T -1
a (t ) = _ AC(t )t(t)_C (t )aP(tf),

(A. 5 a)

Sw ere

- = _Ca(tl +i).Ca(ti +I)AT][A Ca (t )AT+Ctl )-l[C (t )AT]T.

(A.5b)

It is now clear that the optimal estimate a*(tN) can be obtained

by computing the a*(tl)'s, that is sequentially minimizing the

functions s (1 ) in oruer of increasing 1 . Each minimization in the

sequence can be interpreted as an improved reestimation of the

fielo. The covariance of the field is updated at earh time step of

the reestimation process by the information gained from the

preceeding minimizations. At the (0 +1)th time step, using (A. 4b),

(A.4c) and (A.5), a prediction aP(t +1 ) of a(t +1 ) is first

extrapolated from a*(t I ) wich, on the other hand, is an estimate

of aft, ) based on the data obtained prior to t+ I ; then the

preoicted value is corrected in an estimation that uses the updated

cn.. covariance_ -a(tl +q) and the data obtained at
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